Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's start with the original function [tex]\( f(x) = x^2 \)[/tex], which is a basic parabola opening upwards with its vertex at the origin [tex]\((0,0)\)[/tex].
The given function is [tex]\( h(x) = -(x-2)^2 \)[/tex]. We will determine the transformations step-by-step:
1. Horizontal Shift:
- In [tex]\( h(x) = -(x-2)^2 \)[/tex], we have [tex]\((x-2)\)[/tex] inside the square term. This represents a horizontal shift.
- Specifically, the graph of [tex]\( f(x) = x^2 \)[/tex] is shifted 2 units to the right.
- Thus, the new function after this shift is [tex]\( g(x) = (x-2)^2 \)[/tex]. The vertex of [tex]\( g(x) \)[/tex] is now at [tex]\((2,0)\)[/tex].
2. Reflection Over the x-axis:
- The negative sign outside the square in [tex]\( h(x) = -(x-2)^2 \)[/tex] causes a reflection over the x-axis.
- Reflecting [tex]\( g(x) = (x-2)^2 \)[/tex] over the x-axis changes the function to [tex]\( h(x) = -(x-2)^2 \)[/tex].
Now, let's look at the transformed function [tex]\( h(x) = -(x-2)^2 \)[/tex]:
- The vertex of the parabola [tex]\( g(x) = (x-2)^2 \)[/tex] at [tex]\((2,0)\)[/tex] is reflected to [tex]\((2,0)\)[/tex] in [tex]\( h(x) = -(x-2)^2 \)[/tex] because reflection preserves the x-coordinate of the vertex, but changes the sign of the y-coordinate.
- This reflection turns the parabola to open downward, and the values of [tex]\( h(x) \)[/tex] will be non-positive.
Let's examine specific values to understand the transformation.
- For [tex]\( x = 0 \)[/tex]:
- Original function [tex]\( f(0) = 0^2 = 0 \)[/tex]
- Horizontal shift: [tex]\( g(0) = (0-2)^2 = 4 \)[/tex]
- Reflection: [tex]\( h(0) = -(0-2)^2 = -4 \)[/tex]
- For [tex]\( x = 1 \)[/tex]:
- Original function [tex]\( f(1) = 1^2 = 1 \)[/tex]
- Horizontal shift: [tex]\( g(1) = (1-2)^2 = 1 \)[/tex]
- Reflection: [tex]\( h(1) = -(1-2)^2 = -1 \)[/tex]
- For [tex]\( x = 2 \)[/tex]:
- Original function [tex]\( f(2) = 2^2 = 4 \)[/tex]
- Horizontal shift: [tex]\( g(2) = (2-2)^2 = 0 \)[/tex]
- Reflection: [tex]\( h(2) = -(2-2)^2 = 0 \)[/tex]
- For [tex]\( x = 3 \)[/tex]:
- Original function [tex]\( f(3) = 3^2 = 9 \)[/tex]
- Horizontal shift: [tex]\( g(3) = (3-2)^2 = 1 \)[/tex]
- Reflection: [tex]\( h(3) = -(3-2)^2 = -1 \)[/tex]
- For [tex]\( x = 4 \)[/tex]:
- Original function [tex]\( f(4) = 4^2 = 16 \)[/tex]
- Horizontal shift: [tex]\( g(4) = (4-2)^2 = 4 \)[/tex]
- Reflection: [tex]\( h(4) = -(4-2)^2 = -4 \)[/tex]
Summarizing the above values:
- [tex]\( h(0) = -4 \)[/tex]
- [tex]\( h(1) = -1 \)[/tex]
- [tex]\( h(2) = 0 \)[/tex]
- [tex]\( h(3) = -1 \)[/tex]
- [tex]\( h(4) = -4 \)[/tex]
Thus, using these transformations, the graph of [tex]\( h(x) = -(x-2)^2 \)[/tex] can be visualized clearly with a vertex at [tex]\((2, 0)\)[/tex], opening downwards. The specific points [tex]\((0, -4), (1, -1), (2, 0), (3, -1), (4, -4)\)[/tex] illustrate the transformations.
The given function is [tex]\( h(x) = -(x-2)^2 \)[/tex]. We will determine the transformations step-by-step:
1. Horizontal Shift:
- In [tex]\( h(x) = -(x-2)^2 \)[/tex], we have [tex]\((x-2)\)[/tex] inside the square term. This represents a horizontal shift.
- Specifically, the graph of [tex]\( f(x) = x^2 \)[/tex] is shifted 2 units to the right.
- Thus, the new function after this shift is [tex]\( g(x) = (x-2)^2 \)[/tex]. The vertex of [tex]\( g(x) \)[/tex] is now at [tex]\((2,0)\)[/tex].
2. Reflection Over the x-axis:
- The negative sign outside the square in [tex]\( h(x) = -(x-2)^2 \)[/tex] causes a reflection over the x-axis.
- Reflecting [tex]\( g(x) = (x-2)^2 \)[/tex] over the x-axis changes the function to [tex]\( h(x) = -(x-2)^2 \)[/tex].
Now, let's look at the transformed function [tex]\( h(x) = -(x-2)^2 \)[/tex]:
- The vertex of the parabola [tex]\( g(x) = (x-2)^2 \)[/tex] at [tex]\((2,0)\)[/tex] is reflected to [tex]\((2,0)\)[/tex] in [tex]\( h(x) = -(x-2)^2 \)[/tex] because reflection preserves the x-coordinate of the vertex, but changes the sign of the y-coordinate.
- This reflection turns the parabola to open downward, and the values of [tex]\( h(x) \)[/tex] will be non-positive.
Let's examine specific values to understand the transformation.
- For [tex]\( x = 0 \)[/tex]:
- Original function [tex]\( f(0) = 0^2 = 0 \)[/tex]
- Horizontal shift: [tex]\( g(0) = (0-2)^2 = 4 \)[/tex]
- Reflection: [tex]\( h(0) = -(0-2)^2 = -4 \)[/tex]
- For [tex]\( x = 1 \)[/tex]:
- Original function [tex]\( f(1) = 1^2 = 1 \)[/tex]
- Horizontal shift: [tex]\( g(1) = (1-2)^2 = 1 \)[/tex]
- Reflection: [tex]\( h(1) = -(1-2)^2 = -1 \)[/tex]
- For [tex]\( x = 2 \)[/tex]:
- Original function [tex]\( f(2) = 2^2 = 4 \)[/tex]
- Horizontal shift: [tex]\( g(2) = (2-2)^2 = 0 \)[/tex]
- Reflection: [tex]\( h(2) = -(2-2)^2 = 0 \)[/tex]
- For [tex]\( x = 3 \)[/tex]:
- Original function [tex]\( f(3) = 3^2 = 9 \)[/tex]
- Horizontal shift: [tex]\( g(3) = (3-2)^2 = 1 \)[/tex]
- Reflection: [tex]\( h(3) = -(3-2)^2 = -1 \)[/tex]
- For [tex]\( x = 4 \)[/tex]:
- Original function [tex]\( f(4) = 4^2 = 16 \)[/tex]
- Horizontal shift: [tex]\( g(4) = (4-2)^2 = 4 \)[/tex]
- Reflection: [tex]\( h(4) = -(4-2)^2 = -4 \)[/tex]
Summarizing the above values:
- [tex]\( h(0) = -4 \)[/tex]
- [tex]\( h(1) = -1 \)[/tex]
- [tex]\( h(2) = 0 \)[/tex]
- [tex]\( h(3) = -1 \)[/tex]
- [tex]\( h(4) = -4 \)[/tex]
Thus, using these transformations, the graph of [tex]\( h(x) = -(x-2)^2 \)[/tex] can be visualized clearly with a vertex at [tex]\((2, 0)\)[/tex], opening downwards. The specific points [tex]\((0, -4), (1, -1), (2, 0), (3, -1), (4, -4)\)[/tex] illustrate the transformations.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.