Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Use Gaussian elimination to find the complete solution to the following system of equations, or show that none exist:

[tex]\[
\left\{
\begin{array}{rr}
-x + y + z &= -2 \\
-x + 4y - 5z &= -14 \\
4x - 2y - 8z &= 0
\end{array}
\right.
\][/tex]


Sagot :

Certainly! Let's use Gaussian elimination to solve the given system of equations:
[tex]\[ \begin{cases} -x + y + z = -2 \\ -x + 4y - 5z = -14 \\ 4x - 2y - 8z = 0 \end{cases} \][/tex]

We'll start by writing the augmented matrix of the system:

[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ -1 & 4 & -5 & | & -14 \\ 4 & -2 & -8 & | & 0 \end{pmatrix} \][/tex]

### Step 1: Forming Pivot in the First Column

We'll transform the matrix to get a leading 1 in the first row of the first column. For simplicity, let the first row remain the same, and we'll perform row operations to eliminate the variable [tex]\(x\)[/tex] from the second and third rows.

[tex]\[ R1: \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ -1 & 4 & -5 & | & -14 \\ 4 & -2 & -8 & | & 0 \end{pmatrix} \][/tex]

[tex]\[ R2 \gets R2 - R1 \][/tex]
Second row operation:
[tex]\[ -1 + 1 = 0, \quad 4 - 1 = 3, \quad -5 - 1 = -6, \quad -14 + 2 = -12 \][/tex]

Resulting in:
[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & 3 & -6 & | & -12 \\ 4 & -2 & -8 & | & 0 \end{pmatrix} \][/tex]

[tex]\[ R3 \gets R3 + 4 \cdot R1 \][/tex]
Third row operation:
[tex]\[ 4 + 4(-1) = 0, \quad -2 + 4(1) = 2, \quad -8 + 4(1) = 2, \quad 0 + 4(-2) = -8 \][/tex]

Resulting in:
[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & 3 & -6 & | & -12 \\ 0 & 2 & -8 & | & -8 \end{pmatrix} \][/tex]

### Step 2: Forming Pivot in the Second Column

Next, we'll make sure the second row has a leading one in the second column.

[tex]\[ R2 \gets \frac{1}{3} R2 \][/tex]

[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & 1 & -2 & | & -4 \\ 0 & 2 & -8 & | & -8 \end{pmatrix} \][/tex]

To eliminate the variable [tex]\(y\)[/tex] from the third row, we perform:
[tex]\[ R3 \gets R3 - 2 \times R2 \][/tex]

Third row operation:
[tex]\[ 0, \quad 2 - 2(1) = 0, \quad -8 - 2(-2) = -8 + 4 = -4, \quad -8 - 2(-4) = -8 + 8 = 0 \][/tex]

Resulting in:
[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & 1 & -2 & | & -4 \\ 0 & 0 & -4 & | & 0 \end{pmatrix} \][/tex]

### Step 3: Forming Pivot in the Third Column

Finally, for the third row, we make the leading coefficient 1.

[tex]\[ R3 \gets -\frac{1}{4} R3 \][/tex]

Resulting in:
[tex]\[ \begin{pmatrix} -1 & 1 & 1 & | & -2 \\ 0 & 1 & -2 & | & -4 \\ 0 & 0 & 1 & | & 0 \end{pmatrix} \][/tex]

### Step 4: Back Substitution for Solution

With the matrix in row echelon form, we use back substitution to find the values of [tex]\(x\)[/tex], [tex]\(y\)[/tex], and [tex]\(z\)[/tex].

[tex]\[ \begin{cases} z = 0 \\ y - 2z = -4 \implies y - 0 = -4 \implies y = -4 \\ -x + y + z = -2 \implies -x - 4 + 0 = -2 \implies -x - 4 = -2 \implies -x = 2 \implies x = -2 \end{cases} \][/tex]

So, the solutions to the system of equations are:

[tex]\[ x = -2, \quad y = -4, \quad z = 0 \][/tex]

However, note that during the Gaussian Elimination, we observed a problematic row:
[tex]\[ [nan, nan, nan, nan] \][/tex]

This indicates an inconsistency or an element where division is undefined. If we applied our steps correctly, it implies the system might be inconsistent or degenerate. Hence, this requires a deeper look or alternative methods for confirmation.