Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's analyze each expression step by step to see if it simplifies to [tex]\(\frac{625}{n^{12}}\)[/tex]:
1. [tex]\(\left(5 n^{-3}\right)^4\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-3}\right)^4 = 5^4 \cdot \left(n^{-3}\right)^4 = 625 \cdot n^{-12} = \frac{625}{n^{12}} \][/tex]
Conclusion: This expression can be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
2. [tex]\(\left(5 n^{-3}\right)^{-4}\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-3}\right)^{-4} = 5^{-4} \cdot \left(n^{-3}\right)^{-4} = \frac{1}{5^4} \cdot n^{12} = \frac{1}{625} \cdot n^{12} = \frac{n^{12}}{625} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
3. [tex]\(\left(5 n^{-4}\right)^3\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-4}\right)^3 = 5^3 \cdot \left(n^{-4}\right)^3 = 125 \cdot n^{-12} = \frac{125}{n^{12}} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
4. [tex]\(\left(25 n^{-6}\right)^{-2}\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(25 n^{-6}\right)^{-2} = 25^{-2} \cdot \left(n^{-6}\right)^{-2} = \frac{1}{25^2} \cdot n^{12} = \frac{1}{625} \cdot n^{12} = \frac{n^{12}}{625} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
5. [tex]\(\left(25 n^{-6}\right)^2\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(25 n^{-6}\right)^2 = 25^2 \cdot \left(n^{-6}\right)^2 = 625 \cdot n^{-12} = \frac{625}{n^{12}} \][/tex]
Conclusion: This expression can be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
### Summary
The expressions that can be simplified to [tex]\(\frac{625}{n^{12}}\)[/tex] are:
- [tex]\(\left(5 n^{-3}\right)^4\)[/tex]
- [tex]\(\left(25 n^{-6}\right)^2\)[/tex]
Thus, the indices of the expressions which can be simplified to [tex]\(\frac{625}{n^{12}}\)[/tex] are expressions 1 and 5.
1. [tex]\(\left(5 n^{-3}\right)^4\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-3}\right)^4 = 5^4 \cdot \left(n^{-3}\right)^4 = 625 \cdot n^{-12} = \frac{625}{n^{12}} \][/tex]
Conclusion: This expression can be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
2. [tex]\(\left(5 n^{-3}\right)^{-4}\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-3}\right)^{-4} = 5^{-4} \cdot \left(n^{-3}\right)^{-4} = \frac{1}{5^4} \cdot n^{12} = \frac{1}{625} \cdot n^{12} = \frac{n^{12}}{625} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
3. [tex]\(\left(5 n^{-4}\right)^3\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(5 n^{-4}\right)^3 = 5^3 \cdot \left(n^{-4}\right)^3 = 125 \cdot n^{-12} = \frac{125}{n^{12}} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
4. [tex]\(\left(25 n^{-6}\right)^{-2}\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(25 n^{-6}\right)^{-2} = 25^{-2} \cdot \left(n^{-6}\right)^{-2} = \frac{1}{25^2} \cdot n^{12} = \frac{1}{625} \cdot n^{12} = \frac{n^{12}}{625} \][/tex]
Conclusion: This expression cannot be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
5. [tex]\(\left(25 n^{-6}\right)^2\)[/tex]
We can apply the power of a power rule to simplify this:
[tex]\[ \left(25 n^{-6}\right)^2 = 25^2 \cdot \left(n^{-6}\right)^2 = 625 \cdot n^{-12} = \frac{625}{n^{12}} \][/tex]
Conclusion: This expression can be simplified as [tex]\(\frac{625}{n^{12}}\)[/tex].
### Summary
The expressions that can be simplified to [tex]\(\frac{625}{n^{12}}\)[/tex] are:
- [tex]\(\left(5 n^{-3}\right)^4\)[/tex]
- [tex]\(\left(25 n^{-6}\right)^2\)[/tex]
Thus, the indices of the expressions which can be simplified to [tex]\(\frac{625}{n^{12}}\)[/tex] are expressions 1 and 5.
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.