Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Example 8.6

A car accelerates uniformly from [tex]\(18 \, \text{km/h}\)[/tex] to [tex]\(36 \, \text{km/h}\)[/tex] in 5 seconds.

Calculate:
(i) The acceleration
(ii) The distance covered by the car in that time

Solution:


Sagot :

Sure, let's solve this problem step by step.

### Given:
1. Initial velocity, [tex]\( u \)[/tex] = 18 km/h
2. Final velocity, [tex]\( v \)[/tex] = 36 km/h
3. Time, [tex]\( t \)[/tex] = 5 seconds

### To find:
1. Acceleration, [tex]\( a \)[/tex]
2. Distance covered, [tex]\( s \)[/tex]

### Step-by-Step Solution:

#### Step 1: Convert velocities from km/h to m/s
- Initial velocity, [tex]\( u \)[/tex]:
[tex]\[ u = 18 \, \text{km/h} = 18 \times \frac{1000}{3600} \, \text{m/s} = 5 \, \text{m/s} \][/tex]
- Final velocity, [tex]\( v \)[/tex]:
[tex]\[ v = 36 \, \text{km/h} = 36 \times \frac{1000}{3600} \, \text{m/s} = 10 \, \text{m/s} \][/tex]

#### Step 2: Calculate acceleration, [tex]\( a \)[/tex]
Acceleration is given by the formula:
[tex]\[ a = \frac{v - u}{t} \][/tex]
Substitute the values:
[tex]\[ a = \frac{10 \, \text{m/s} - 5 \, \text{m/s}}{5 \, \text{seconds}} = \frac{5 \, \text{m/s}}{5 \, \text{seconds}} = 1 \, \text{m/s}^2 \][/tex]

#### Step 3: Calculate the distance covered, [tex]\( s \)[/tex]
The distance covered under uniform acceleration is given by the formula:
[tex]\[ s = ut + \frac{1}{2} a t^2 \][/tex]
Substitute the values:
[tex]\[ s = 5 \, \text{m/s} \times 5 \, \text{seconds} + \frac{1}{2} \times 1 \, \text{m/s}^2 \times (5 \, \text{seconds})^2 \][/tex]
Calculate each part:
- [tex]\( 5 \, \text{m/s} \times 5 \, \text{seconds} = 25 \, \text{meters} \)[/tex]
- [tex]\( \frac{1}{2} \times 1 \, \text{m/s}^2 \times 25 \, \text{seconds}^2 = 0.5 \times 25 = 12.5 \, \text{meters} \)[/tex]

Now, sum these values:
[tex]\[ s = 25 \, \text{meters} + 12.5 \, \text{meters} = 37.5 \, \text{meters} \][/tex]

### Final Answers:
1. Acceleration, [tex]\( a \)[/tex] = 1 m/s²
2. Distance covered, [tex]\( s \)[/tex] = 37.5 meters

And that's our detailed solution!
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.