Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Sure, let's differentiate the given expression step-by-step.
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.