Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Sure, let's differentiate the given expression step-by-step.
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.