At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's differentiate the given expression step-by-step.
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
We want to find the derivative of the expression [tex]\( \frac{e^{ax}}{1 + ax} \)[/tex] with respect to [tex]\( x \)[/tex]. To do this, we can apply the quotient rule for differentiation, which states:
[tex]\[ \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{v(x) u'(x) - u(x) v'(x)}{[v(x)]^2} \][/tex]
where [tex]\( u(x) = e^{ax} \)[/tex] and [tex]\( v(x) = 1 + ax \)[/tex].
First, let's find the derivatives of [tex]\( u(x) \)[/tex] and [tex]\( v(x) \)[/tex].
1. Derivative of [tex]\( u(x) \)[/tex]:
[tex]\[ u(x) = e^{ax} \][/tex]
Using the chain rule:
[tex]\[ u'(x) = \frac{d}{dx} (e^{ax}) = ae^{ax} \][/tex]
2. Derivative of [tex]\( v(x) \)[/tex]:
[tex]\[ v(x) = 1 + ax \][/tex]
Since [tex]\( v(x) \)[/tex] is a linear function with respect to [tex]\( x \)[/tex]:
[tex]\[ v'(x) = \frac{d}{dx} (1 + ax) = a \][/tex]
Now, we can apply the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{(1 + ax) \cdot ae^{ax} - e^{ax} \cdot a}{(1 + ax)^2} \][/tex]
Let's simplify the numerator:
[tex]\[ (1 + ax) \cdot ae^{ax} - e^{ax} \cdot a = ae^{ax} (1 + ax) - ae^{ax} = ae^{ax} + a^2 xe^{ax} - ae^{ax} \][/tex]
[tex]\[ = a^2 xe^{ax} \][/tex]
So, the derivative is:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax} + a^2 x e^{ax} - a e^{ax}}{(1 + ax)^2} = \frac{a^2 xe^{ax}}{(1 + ax)^2} \][/tex]
To summarize:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Or more neatly rewritten:
[tex]\[ \frac{d}{dx} \left( \frac{e^{ax}}{1 + ax} \right) = \frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2} \][/tex]
Therefore, the result is:
[tex]\[ \boxed{\frac{a e^{ax}}{1 + ax} - \frac{a e^{ax}}{(1 + ax)^2}} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.