Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the given inequalities step-by-step.
1. First Inequality: [tex]\(0 < n - 1 + 6\)[/tex]
[tex]\[ 0 < n - 1 + 6 \][/tex]
Simplify inside the inequality:
[tex]\[ 0 < n + 5 \][/tex]
Subtract 5 from both sides to isolate [tex]\(n\)[/tex]:
[tex]\[ 0 - 5 < n \][/tex]
[tex]\[ -5 < n \][/tex]
So, the solution for this inequality is:
[tex]\[ n > -5 \][/tex]
2. Second Inequality: [tex]\(0 \geq n - 1 + 7\)[/tex]
[tex]\[ 0 \geq n - 1 + 7 \][/tex]
Simplify inside the inequality:
[tex]\[ 0 \geq n + 6 \][/tex]
Subtract 6 from both sides to isolate [tex]\(n\)[/tex]:
[tex]\[ 0 - 6 \geq n \][/tex]
[tex]\[ -6 \geq n \][/tex]
So, the solution for this inequality is:
[tex]\[ n \leq -6 \][/tex]
3. Third Inequality: [tex]\(-3x + 2x > 5\)[/tex]
[tex]\[ -3x + 2x > 5 \][/tex]
Combine like terms:
[tex]\[ -x > 5 \][/tex]
Multiply both sides by -1 (remember to flip the inequality sign):
[tex]\[ x < -5 \][/tex]
So, the solution for this inequality is:
[tex]\[ x < -5 \][/tex]
4. Fourth Inequality: [tex]\(-3x + 2x \leq 6\)[/tex]
[tex]\[ -3x + 2x \leq 6 \][/tex]
Combine like terms:
[tex]\[ -x \leq 6 \][/tex]
Multiply both sides by -1 (remember to flip the inequality sign):
[tex]\[ x \geq -6 \][/tex]
So, the solution for this inequality is:
[tex]\[ x \geq -6 \][/tex]
To summarize, the solutions to the inequalities are:
- [tex]\(n > -5\)[/tex]
- [tex]\(n \leq -6\)[/tex]
- [tex]\(x < -5\)[/tex]
- [tex]\(x \geq -6\)[/tex]
1. First Inequality: [tex]\(0 < n - 1 + 6\)[/tex]
[tex]\[ 0 < n - 1 + 6 \][/tex]
Simplify inside the inequality:
[tex]\[ 0 < n + 5 \][/tex]
Subtract 5 from both sides to isolate [tex]\(n\)[/tex]:
[tex]\[ 0 - 5 < n \][/tex]
[tex]\[ -5 < n \][/tex]
So, the solution for this inequality is:
[tex]\[ n > -5 \][/tex]
2. Second Inequality: [tex]\(0 \geq n - 1 + 7\)[/tex]
[tex]\[ 0 \geq n - 1 + 7 \][/tex]
Simplify inside the inequality:
[tex]\[ 0 \geq n + 6 \][/tex]
Subtract 6 from both sides to isolate [tex]\(n\)[/tex]:
[tex]\[ 0 - 6 \geq n \][/tex]
[tex]\[ -6 \geq n \][/tex]
So, the solution for this inequality is:
[tex]\[ n \leq -6 \][/tex]
3. Third Inequality: [tex]\(-3x + 2x > 5\)[/tex]
[tex]\[ -3x + 2x > 5 \][/tex]
Combine like terms:
[tex]\[ -x > 5 \][/tex]
Multiply both sides by -1 (remember to flip the inequality sign):
[tex]\[ x < -5 \][/tex]
So, the solution for this inequality is:
[tex]\[ x < -5 \][/tex]
4. Fourth Inequality: [tex]\(-3x + 2x \leq 6\)[/tex]
[tex]\[ -3x + 2x \leq 6 \][/tex]
Combine like terms:
[tex]\[ -x \leq 6 \][/tex]
Multiply both sides by -1 (remember to flip the inequality sign):
[tex]\[ x \geq -6 \][/tex]
So, the solution for this inequality is:
[tex]\[ x \geq -6 \][/tex]
To summarize, the solutions to the inequalities are:
- [tex]\(n > -5\)[/tex]
- [tex]\(n \leq -6\)[/tex]
- [tex]\(x < -5\)[/tex]
- [tex]\(x \geq -6\)[/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.