Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Sure, let's evaluate the given piecewise function step-by-step.
Given the function:
[tex]\[ f(x) = \begin{cases} -5x & \text{if } x < 1 \\ 1 & \text{if } x = 1 \\ 5x & \text{if } x > 1 \end{cases} \][/tex]
(a) [tex]\(\lim_{x \to 1^-} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the left (i.e., from values less than 1).
- When [tex]\(x < 1\)[/tex], [tex]\(f(x) = -5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -5x = -5 \cdot 1 = -5 \][/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the right (i.e., from values greater than 1).
- When [tex]\(x > 1\)[/tex], [tex]\(f(x) = 5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 5x = 5 \cdot 1 = 5 \][/tex]
(c) [tex]\(\lim_{x \to 1} f(x)\)[/tex]
- For the limit [tex]\(\lim_{x \to 1} f(x)\)[/tex] to exist, both the left-hand limit [tex]\(\lim_{x \to 1^-} f(x)\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x)\)[/tex] must exist and be equal.
- From (a), we have [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex].
- From (b), we have [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex].
Since these two limits are not equal, the overall limit does not exist (DNE).
(d) [tex]\(f(1)\)[/tex]
- The function value at [tex]\(x = 1\)[/tex] is given by the piecewise definition. It specifically states that [tex]\(f(x) = 1\)[/tex] when [tex]\(x = 1\)[/tex].
Thus,
[tex]\[ f(1) = 1 \][/tex]
(e) Comparison and conclusion
- Since the left-hand limit [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex] are not equal, there is a discontinuity at [tex]\(x = 1\)[/tex].
- The type of discontinuity where the left-hand and right-hand limits exist but are not equal is called a "jump discontinuity".
So, the function has a jump discontinuity at [tex]\(x = 1\)[/tex].
### Summary of Results:
(a) [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex]
(c) [tex]\(\lim_{x \to 1} f(x) = \text{DNE (Does Not Exist)}\)[/tex]
(d) [tex]\(f(1) = 1\)[/tex]
(e) The function has a jump discontinuity at [tex]\(x = 1\)[/tex].
Given the function:
[tex]\[ f(x) = \begin{cases} -5x & \text{if } x < 1 \\ 1 & \text{if } x = 1 \\ 5x & \text{if } x > 1 \end{cases} \][/tex]
(a) [tex]\(\lim_{x \to 1^-} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the left (i.e., from values less than 1).
- When [tex]\(x < 1\)[/tex], [tex]\(f(x) = -5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -5x = -5 \cdot 1 = -5 \][/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the right (i.e., from values greater than 1).
- When [tex]\(x > 1\)[/tex], [tex]\(f(x) = 5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 5x = 5 \cdot 1 = 5 \][/tex]
(c) [tex]\(\lim_{x \to 1} f(x)\)[/tex]
- For the limit [tex]\(\lim_{x \to 1} f(x)\)[/tex] to exist, both the left-hand limit [tex]\(\lim_{x \to 1^-} f(x)\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x)\)[/tex] must exist and be equal.
- From (a), we have [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex].
- From (b), we have [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex].
Since these two limits are not equal, the overall limit does not exist (DNE).
(d) [tex]\(f(1)\)[/tex]
- The function value at [tex]\(x = 1\)[/tex] is given by the piecewise definition. It specifically states that [tex]\(f(x) = 1\)[/tex] when [tex]\(x = 1\)[/tex].
Thus,
[tex]\[ f(1) = 1 \][/tex]
(e) Comparison and conclusion
- Since the left-hand limit [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex] are not equal, there is a discontinuity at [tex]\(x = 1\)[/tex].
- The type of discontinuity where the left-hand and right-hand limits exist but are not equal is called a "jump discontinuity".
So, the function has a jump discontinuity at [tex]\(x = 1\)[/tex].
### Summary of Results:
(a) [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex]
(c) [tex]\(\lim_{x \to 1} f(x) = \text{DNE (Does Not Exist)}\)[/tex]
(d) [tex]\(f(1) = 1\)[/tex]
(e) The function has a jump discontinuity at [tex]\(x = 1\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.