Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure, let's evaluate the given piecewise function step-by-step.
Given the function:
[tex]\[ f(x) = \begin{cases} -5x & \text{if } x < 1 \\ 1 & \text{if } x = 1 \\ 5x & \text{if } x > 1 \end{cases} \][/tex]
(a) [tex]\(\lim_{x \to 1^-} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the left (i.e., from values less than 1).
- When [tex]\(x < 1\)[/tex], [tex]\(f(x) = -5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -5x = -5 \cdot 1 = -5 \][/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the right (i.e., from values greater than 1).
- When [tex]\(x > 1\)[/tex], [tex]\(f(x) = 5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 5x = 5 \cdot 1 = 5 \][/tex]
(c) [tex]\(\lim_{x \to 1} f(x)\)[/tex]
- For the limit [tex]\(\lim_{x \to 1} f(x)\)[/tex] to exist, both the left-hand limit [tex]\(\lim_{x \to 1^-} f(x)\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x)\)[/tex] must exist and be equal.
- From (a), we have [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex].
- From (b), we have [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex].
Since these two limits are not equal, the overall limit does not exist (DNE).
(d) [tex]\(f(1)\)[/tex]
- The function value at [tex]\(x = 1\)[/tex] is given by the piecewise definition. It specifically states that [tex]\(f(x) = 1\)[/tex] when [tex]\(x = 1\)[/tex].
Thus,
[tex]\[ f(1) = 1 \][/tex]
(e) Comparison and conclusion
- Since the left-hand limit [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex] are not equal, there is a discontinuity at [tex]\(x = 1\)[/tex].
- The type of discontinuity where the left-hand and right-hand limits exist but are not equal is called a "jump discontinuity".
So, the function has a jump discontinuity at [tex]\(x = 1\)[/tex].
### Summary of Results:
(a) [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex]
(c) [tex]\(\lim_{x \to 1} f(x) = \text{DNE (Does Not Exist)}\)[/tex]
(d) [tex]\(f(1) = 1\)[/tex]
(e) The function has a jump discontinuity at [tex]\(x = 1\)[/tex].
Given the function:
[tex]\[ f(x) = \begin{cases} -5x & \text{if } x < 1 \\ 1 & \text{if } x = 1 \\ 5x & \text{if } x > 1 \end{cases} \][/tex]
(a) [tex]\(\lim_{x \to 1^-} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the left (i.e., from values less than 1).
- When [tex]\(x < 1\)[/tex], [tex]\(f(x) = -5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} -5x = -5 \cdot 1 = -5 \][/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x)\)[/tex]
- This represents the limit of [tex]\(f(x)\)[/tex] as [tex]\(x\)[/tex] approaches 1 from the right (i.e., from values greater than 1).
- When [tex]\(x > 1\)[/tex], [tex]\(f(x) = 5x\)[/tex].
Thus,
[tex]\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} 5x = 5 \cdot 1 = 5 \][/tex]
(c) [tex]\(\lim_{x \to 1} f(x)\)[/tex]
- For the limit [tex]\(\lim_{x \to 1} f(x)\)[/tex] to exist, both the left-hand limit [tex]\(\lim_{x \to 1^-} f(x)\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x)\)[/tex] must exist and be equal.
- From (a), we have [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex].
- From (b), we have [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex].
Since these two limits are not equal, the overall limit does not exist (DNE).
(d) [tex]\(f(1)\)[/tex]
- The function value at [tex]\(x = 1\)[/tex] is given by the piecewise definition. It specifically states that [tex]\(f(x) = 1\)[/tex] when [tex]\(x = 1\)[/tex].
Thus,
[tex]\[ f(1) = 1 \][/tex]
(e) Comparison and conclusion
- Since the left-hand limit [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex] and the right-hand limit [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex] are not equal, there is a discontinuity at [tex]\(x = 1\)[/tex].
- The type of discontinuity where the left-hand and right-hand limits exist but are not equal is called a "jump discontinuity".
So, the function has a jump discontinuity at [tex]\(x = 1\)[/tex].
### Summary of Results:
(a) [tex]\(\lim_{x \to 1^-} f(x) = -5\)[/tex]
(b) [tex]\(\lim_{x \to 1^+} f(x) = 5\)[/tex]
(c) [tex]\(\lim_{x \to 1} f(x) = \text{DNE (Does Not Exist)}\)[/tex]
(d) [tex]\(f(1) = 1\)[/tex]
(e) The function has a jump discontinuity at [tex]\(x = 1\)[/tex].
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.