Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Certainly! To find the wavelength of a microwave given its frequency and the speed of light, we'll use the fundamental relationship between speed, frequency, and wavelength in wave mechanics.
The relationship is given by the formula:
[tex]\[ \text{wavelength} (\lambda) = \frac{\text{speed of light} (c)}{\text{frequency} (f)} \][/tex]
Given:
- The frequency, [tex]\( f = 2.45 \times 10^9 \)[/tex] Hz
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s
Now, we'll substitute these values into the formula to calculate the wavelength:
[tex]\[ \lambda = \frac{c}{f} \][/tex]
[tex]\[ \lambda = \frac{3.0 \times 10^8 \, \text{m/s}}{2.45 \times 10^9 \, \text{Hz}} \][/tex]
Dividing the numerical values:
[tex]\[ \lambda = \frac{3.0}{2.45} \times 10^{8-9} \, \text{m} \][/tex]
[tex]\[ \lambda = 1.2244897959183673 \times 10^{-1} \, \text{m} \][/tex]
Converting [tex]\(1.2244897959183673 \times 10^{-1} \, \text{m}\)[/tex] to standard notation:
Hence, the wavelength of the microwave is:
[tex]\[ \lambda \approx 0.122 \, \text{m} \][/tex]
This result expresses the wavelength of a microwave with a frequency of [tex]\(2.45 \times 10^9\)[/tex] Hz, when the speed of light is [tex]\(3.0 \times 10^8\)[/tex] m/s.
The relationship is given by the formula:
[tex]\[ \text{wavelength} (\lambda) = \frac{\text{speed of light} (c)}{\text{frequency} (f)} \][/tex]
Given:
- The frequency, [tex]\( f = 2.45 \times 10^9 \)[/tex] Hz
- The speed of light, [tex]\( c = 3.0 \times 10^8 \)[/tex] m/s
Now, we'll substitute these values into the formula to calculate the wavelength:
[tex]\[ \lambda = \frac{c}{f} \][/tex]
[tex]\[ \lambda = \frac{3.0 \times 10^8 \, \text{m/s}}{2.45 \times 10^9 \, \text{Hz}} \][/tex]
Dividing the numerical values:
[tex]\[ \lambda = \frac{3.0}{2.45} \times 10^{8-9} \, \text{m} \][/tex]
[tex]\[ \lambda = 1.2244897959183673 \times 10^{-1} \, \text{m} \][/tex]
Converting [tex]\(1.2244897959183673 \times 10^{-1} \, \text{m}\)[/tex] to standard notation:
Hence, the wavelength of the microwave is:
[tex]\[ \lambda \approx 0.122 \, \text{m} \][/tex]
This result expresses the wavelength of a microwave with a frequency of [tex]\(2.45 \times 10^9\)[/tex] Hz, when the speed of light is [tex]\(3.0 \times 10^8\)[/tex] m/s.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.