Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To find the correct equation and approximate the remaining mass of a 200 mg sample of iron after 12 years, follow these steps:
1. Understand the Given Function:
The function to determine the remaining mass of a radioactive substance after [tex]\( t \)[/tex] years is provided:
[tex]\[ f(t) = m \left( 0.5 \right)^{\frac{t}{h}} \][/tex]
Where [tex]\( m \)[/tex] is the initial mass, and [tex]\( h \)[/tex] is the half-life in years.
2. Identify Given Values:
- The initial mass [tex]\( m = 200 \)[/tex] mg.
- The half-life of iron [tex]\( h = 2.7 \)[/tex] years.
- The time duration [tex]\( t = 12 \)[/tex] years.
3. Substitute the Values into the Function:
Substitute [tex]\( m = 200 \)[/tex], [tex]\( h = 2.7 \)[/tex], and [tex]\( t = 12 \)[/tex] into the function:
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{12}{2.7}} \][/tex]
4. Calculate the Exponent:
[tex]\[ \frac{12}{2.7} \approx 4.444 \][/tex]
5. Evaluate the Expression:
Evaluate [tex]\( (0.5)^{4.444} \)[/tex]:
[tex]\[ (0.5)^{4.444} \approx 0.045929 \][/tex]
6. Multiply by the Initial Mass:
Multiply the resulting value by the initial mass:
[tex]\[ 200 \times 0.045929 \approx 9.1858 \][/tex]
7. Compare With Provided Choices:
From the available choices:
- [tex]\( f(t)=2.7(0.5)^{\frac{t}{200}} ; 2.6 \text{ mg} \)[/tex]
- [tex]\( f(t)=2.7(0.5)^t ; 0.0007 \text{ mg} \)[/tex]
- [tex]\( f(t)=200(0.5)^t ; 0.05 \text{ mg} \)[/tex]
- [tex]\( f(t)=200(0.5)^{\frac{t}{2.7}} ; 9.2 \text{ mg} \)[/tex]
The equation
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{t}{2.7}} \][/tex]
correctly incorporates the initial mass, the half-life, and the time. The remaining mass calculation also closely matches the provided approximation of 9.2 mg for the 12-year duration.
Therefore, the correct equation is:
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{t}{2.7}} \][/tex]
And the approximate remaining mass after 12 years is:
[tex]\[ \approx 9.2 \text{ mg} \][/tex]
Thus, the answer is:
[tex]\[ f(t)=200(0.5)^{\frac{t}{2.7}} ; 9.2 \text{ mg} \][/tex]
1. Understand the Given Function:
The function to determine the remaining mass of a radioactive substance after [tex]\( t \)[/tex] years is provided:
[tex]\[ f(t) = m \left( 0.5 \right)^{\frac{t}{h}} \][/tex]
Where [tex]\( m \)[/tex] is the initial mass, and [tex]\( h \)[/tex] is the half-life in years.
2. Identify Given Values:
- The initial mass [tex]\( m = 200 \)[/tex] mg.
- The half-life of iron [tex]\( h = 2.7 \)[/tex] years.
- The time duration [tex]\( t = 12 \)[/tex] years.
3. Substitute the Values into the Function:
Substitute [tex]\( m = 200 \)[/tex], [tex]\( h = 2.7 \)[/tex], and [tex]\( t = 12 \)[/tex] into the function:
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{12}{2.7}} \][/tex]
4. Calculate the Exponent:
[tex]\[ \frac{12}{2.7} \approx 4.444 \][/tex]
5. Evaluate the Expression:
Evaluate [tex]\( (0.5)^{4.444} \)[/tex]:
[tex]\[ (0.5)^{4.444} \approx 0.045929 \][/tex]
6. Multiply by the Initial Mass:
Multiply the resulting value by the initial mass:
[tex]\[ 200 \times 0.045929 \approx 9.1858 \][/tex]
7. Compare With Provided Choices:
From the available choices:
- [tex]\( f(t)=2.7(0.5)^{\frac{t}{200}} ; 2.6 \text{ mg} \)[/tex]
- [tex]\( f(t)=2.7(0.5)^t ; 0.0007 \text{ mg} \)[/tex]
- [tex]\( f(t)=200(0.5)^t ; 0.05 \text{ mg} \)[/tex]
- [tex]\( f(t)=200(0.5)^{\frac{t}{2.7}} ; 9.2 \text{ mg} \)[/tex]
The equation
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{t}{2.7}} \][/tex]
correctly incorporates the initial mass, the half-life, and the time. The remaining mass calculation also closely matches the provided approximation of 9.2 mg for the 12-year duration.
Therefore, the correct equation is:
[tex]\[ f(t) = 200 \left( 0.5 \right)^{\frac{t}{2.7}} \][/tex]
And the approximate remaining mass after 12 years is:
[tex]\[ \approx 9.2 \text{ mg} \][/tex]
Thus, the answer is:
[tex]\[ f(t)=200(0.5)^{\frac{t}{2.7}} ; 9.2 \text{ mg} \][/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.