Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To factor the polynomial [tex]\(x^3 - 4x^2 + 7x - 28\)[/tex] by grouping, follow these steps:
1. Group the terms: Separate the polynomial into two groups. In this case, we separate it as:
[tex]\[ (x^3 - 4x^2) + (7x - 28) \][/tex]
2. Factor out the Greatest Common Factor (GCF) from each group:
- For the first group [tex]\((x^3 - 4x^2)\)[/tex], the GCF is [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x - 4) \][/tex]
- For the second group [tex]\((7x - 28)\)[/tex], the GCF is 7:
[tex]\[ 7(x - 4) \][/tex]
3. Factor by grouping: Since both groups contain the common binomial factor [tex]\((x - 4)\)[/tex], factor this binomial out:
[tex]\[ x^2(x - 4) + 7(x - 4) = (x - 4)(x^2 + 7) \][/tex]
So, the polynomial [tex]\( x^3 - 4x^2 + 7x - 28 \)[/tex] factors to:
[tex]\[ (x^2 + 7)(x - 4) \][/tex]
Therefore, the correct resulting expression is:
[tex]\[ \boxed{(x^2 + 7)(x - 4)} \][/tex]
1. Group the terms: Separate the polynomial into two groups. In this case, we separate it as:
[tex]\[ (x^3 - 4x^2) + (7x - 28) \][/tex]
2. Factor out the Greatest Common Factor (GCF) from each group:
- For the first group [tex]\((x^3 - 4x^2)\)[/tex], the GCF is [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x - 4) \][/tex]
- For the second group [tex]\((7x - 28)\)[/tex], the GCF is 7:
[tex]\[ 7(x - 4) \][/tex]
3. Factor by grouping: Since both groups contain the common binomial factor [tex]\((x - 4)\)[/tex], factor this binomial out:
[tex]\[ x^2(x - 4) + 7(x - 4) = (x - 4)(x^2 + 7) \][/tex]
So, the polynomial [tex]\( x^3 - 4x^2 + 7x - 28 \)[/tex] factors to:
[tex]\[ (x^2 + 7)(x - 4) \][/tex]
Therefore, the correct resulting expression is:
[tex]\[ \boxed{(x^2 + 7)(x - 4)} \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.