Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To factor the polynomial [tex]\(10x^3 + 35x^2 - 4x - 14\)[/tex] by grouping, follow these steps:
1. Group the terms:
Separate the polynomial into two groups:
[tex]\[ (10x^3 + 35x^2) + (-4x - 14) \][/tex]
2. Factor out the Greatest Common Factor (GCF) from each group:
- For the first group [tex]\((10x^3 + 35x^2)\)[/tex], the GCF is [tex]\(5x^2\)[/tex]:
[tex]\[ 10x^3 + 35x^2 = 5x^2(2x + 7) \][/tex]
- For the second group [tex]\((-4x - 14)\)[/tex], the GCF is [tex]\(-2\)[/tex]:
[tex]\[ -4x - 14 = -2(2x + 7) \][/tex]
3. Rewrite the polynomial with the factored terms:
[tex]\[ 10x^3 + 35x^2 - 4x - 14 = 5x^2(2x + 7) - 2(2x + 7) \][/tex]
4. Identify the common factor in both terms:
Both terms contain the common binomial factor [tex]\((2x + 7)\)[/tex].
Therefore, the correct missing factor in both sets of parentheses is:
[tex]\[ \boxed{2x + 7} \][/tex]
1. Group the terms:
Separate the polynomial into two groups:
[tex]\[ (10x^3 + 35x^2) + (-4x - 14) \][/tex]
2. Factor out the Greatest Common Factor (GCF) from each group:
- For the first group [tex]\((10x^3 + 35x^2)\)[/tex], the GCF is [tex]\(5x^2\)[/tex]:
[tex]\[ 10x^3 + 35x^2 = 5x^2(2x + 7) \][/tex]
- For the second group [tex]\((-4x - 14)\)[/tex], the GCF is [tex]\(-2\)[/tex]:
[tex]\[ -4x - 14 = -2(2x + 7) \][/tex]
3. Rewrite the polynomial with the factored terms:
[tex]\[ 10x^3 + 35x^2 - 4x - 14 = 5x^2(2x + 7) - 2(2x + 7) \][/tex]
4. Identify the common factor in both terms:
Both terms contain the common binomial factor [tex]\((2x + 7)\)[/tex].
Therefore, the correct missing factor in both sets of parentheses is:
[tex]\[ \boxed{2x + 7} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.