Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To factor the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] by grouping, we need to follow a step-by-step approach. Here is how it can be done:
1. Group the terms:
We can group the polynomial into two parts to facilitate factoring:
[tex]\[ (x^3 + x^2) + (x + 1) \][/tex]
2. Factor out the common term from each group:
- In the first group, [tex]\(x^3 + x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x + 1) \][/tex]
- In the second group, [tex]\(x + 1\)[/tex], we notice that there is no common factor other than 1, so it remains the same:
[tex]\[ 1(x + 1) \][/tex]
3. Combine the factored groups:
We can see that both groups now have a common factor of [tex]\((x + 1)\)[/tex]:
[tex]\[ x^2(x + 1) + 1(x + 1) \][/tex]
4. Factor out the common binomial factor:
Factor out the [tex]\((x + 1)\)[/tex] from both terms:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] is:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
The correct answer from the given choices is:
[tex]\[ \left(x^2+1\right)(x+1) \][/tex]
1. Group the terms:
We can group the polynomial into two parts to facilitate factoring:
[tex]\[ (x^3 + x^2) + (x + 1) \][/tex]
2. Factor out the common term from each group:
- In the first group, [tex]\(x^3 + x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x + 1) \][/tex]
- In the second group, [tex]\(x + 1\)[/tex], we notice that there is no common factor other than 1, so it remains the same:
[tex]\[ 1(x + 1) \][/tex]
3. Combine the factored groups:
We can see that both groups now have a common factor of [tex]\((x + 1)\)[/tex]:
[tex]\[ x^2(x + 1) + 1(x + 1) \][/tex]
4. Factor out the common binomial factor:
Factor out the [tex]\((x + 1)\)[/tex] from both terms:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] is:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
The correct answer from the given choices is:
[tex]\[ \left(x^2+1\right)(x+1) \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.