Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factor the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] by grouping, we need to follow a step-by-step approach. Here is how it can be done:
1. Group the terms:
We can group the polynomial into two parts to facilitate factoring:
[tex]\[ (x^3 + x^2) + (x + 1) \][/tex]
2. Factor out the common term from each group:
- In the first group, [tex]\(x^3 + x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x + 1) \][/tex]
- In the second group, [tex]\(x + 1\)[/tex], we notice that there is no common factor other than 1, so it remains the same:
[tex]\[ 1(x + 1) \][/tex]
3. Combine the factored groups:
We can see that both groups now have a common factor of [tex]\((x + 1)\)[/tex]:
[tex]\[ x^2(x + 1) + 1(x + 1) \][/tex]
4. Factor out the common binomial factor:
Factor out the [tex]\((x + 1)\)[/tex] from both terms:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] is:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
The correct answer from the given choices is:
[tex]\[ \left(x^2+1\right)(x+1) \][/tex]
1. Group the terms:
We can group the polynomial into two parts to facilitate factoring:
[tex]\[ (x^3 + x^2) + (x + 1) \][/tex]
2. Factor out the common term from each group:
- In the first group, [tex]\(x^3 + x^2\)[/tex], we can factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x + 1) \][/tex]
- In the second group, [tex]\(x + 1\)[/tex], we notice that there is no common factor other than 1, so it remains the same:
[tex]\[ 1(x + 1) \][/tex]
3. Combine the factored groups:
We can see that both groups now have a common factor of [tex]\((x + 1)\)[/tex]:
[tex]\[ x^2(x + 1) + 1(x + 1) \][/tex]
4. Factor out the common binomial factor:
Factor out the [tex]\((x + 1)\)[/tex] from both terms:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
Thus, the factored form of the polynomial [tex]\(x^3 + x^2 + x + 1\)[/tex] is:
[tex]\[ (x + 1)(x^2 + 1) \][/tex]
The correct answer from the given choices is:
[tex]\[ \left(x^2+1\right)(x+1) \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.