Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Factor out the greatest common factor.

[tex]3x^3 + 7x^2 + 27x[/tex]

[tex]\boxed{x(3x^2 + 7x + 27)}[/tex]

Sagot :

Sure, let's factor out the greatest common factor from the given polynomial [tex]\( 3x^3 + 7x^2 + 27x \)[/tex]. Here is the step-by-step solution:

1. Identify the terms in the polynomial:
[tex]\[ 3x^3, \quad 7x^2, \quad 27x \][/tex]

2. Determine the greatest common factor (GCF) of the terms:
- Identify the common factors in each term:
- [tex]\( 3x^3 \)[/tex] has factors: [tex]\( 3 \times x \times x \times x \)[/tex]
- [tex]\( 7x^2 \)[/tex] has factors: [tex]\( 7 \times x \times x \)[/tex]
- [tex]\( 27x \)[/tex] has factors: [tex]\( 27 \times x \)[/tex]

- The common factor across all terms is [tex]\( x \)[/tex] since each term has at least one [tex]\(x\)[/tex].

3. Factor out the GCF (which is [tex]\( x \)[/tex]):
[tex]\[ 3x^3 + 7x^2 + 27x = x(3x^2) + x(7x) + x(27) \][/tex]

4. Rewrite the polynomial with the GCF factored out:
[tex]\[ 3x^3 + 7x^2 + 27x = x(3x^2 + 7x + 27) \][/tex]

Thus, the factored form of the polynomial [tex]\( 3x^3 + 7x^2 + 27x \)[/tex] is:
[tex]\[ x(3x^2 + 7x + 27) \][/tex]

So, we have successfully factored out the greatest common factor from the given polynomial.
Hi1315

Answer:

x(3x²+7x+27)  

Step-by-step explanation:

To factor out the greatest common factor (GCF) from the expression  [tex]3x^3 + 7x^2 + 27x[/tex] , follow these steps:

1. Identify the GCF of the terms:

  The terms are  [tex]3x^3 , 7x^2 , \:and \: 27x .[/tex]

  - The coefficients are 3, 7, and 27. The GCF of these coefficients is 1 since 3, 7, and 27 have no common factors other than 1.

  - The variable part involves  x  with the smallest power being  x  (as  x  is present in all terms).

  Therefore, the GCF is  x .

2. Factor out the GCF:

Factor  x  out from each term:

[tex]3x^3 + 7x^2 + 27x = x(3x^2 + 7x + 27)[/tex]