Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the correlation coefficient for the given data points, we need to use the correlation formula, specifically Pearson’s correlation coefficient. Here’s a step-by-step method to determine this:
1. List the given data points:
- [tex]\( x \)[/tex] values: 0, 5, 10, 15
- [tex]\( y \)[/tex] values: 15, 10, 5, 0
2. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Mean of [tex]\( x \)[/tex], [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
- Mean of [tex]\( y \)[/tex], [tex]\(\bar{y}\)[/tex]:
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the deviations from the means:
- Deviations of [tex]\( x \)[/tex] from the mean:
[tex]\[ x_1 - \bar{x} = 0 - 7.5 = -7.5 \][/tex]
[tex]\[ x_2 - \bar{x} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ x_3 - \bar{x} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ x_4 - \bar{x} = 15 - 7.5 = 7.5 \][/tex]
- Deviations of [tex]\( y \)[/tex] from the mean:
[tex]\[ y_1 - \bar{y} = 15 - 7.5 = 7.5 \][/tex]
[tex]\[ y_2 - \bar{y} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ y_3 - \bar{y} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ y_4 - \bar{y} = 0 - 7.5 = -7.5 \][/tex]
4. Calculate the products of the deviations for each pair:
[tex]\[ (-7.5 \times 7.5) = -56.25 \][/tex]
[tex]\[ (-2.5 \times 2.5) = -6.25 \][/tex]
[tex]\[ (2.5 \times -2.5) = -6.25 \][/tex]
[tex]\[ (7.5 \times -7.5) = -56.25 \][/tex]
5. Summing up these products:
[tex]\[ -56.25 + (-6.25) + (-6.25) + (-56.25) = -125 \][/tex]
6. Calculate the sum of squared deviations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x \)[/tex]:
[tex]\[ (-7.5^2) + (-2.5^2) + (2.5^2) + (7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (7.5^2) + (2.5^2) + (-2.5^2) + (-7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
7. Putting it all into the Pearson correlation coefficient formula:
[tex]\[ r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2}} \times \sqrt{\sum{(y_i - \bar{y})^2}}} \][/tex]
Substituting in the sums from above:
[tex]\[ r = \frac{-125}{\sqrt{125} \times \sqrt{125}} = \frac{-125}{125} = -1 \][/tex]
Therefore, the correlation coefficient for the data shown in the table is [tex]\( -1 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
1. List the given data points:
- [tex]\( x \)[/tex] values: 0, 5, 10, 15
- [tex]\( y \)[/tex] values: 15, 10, 5, 0
2. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Mean of [tex]\( x \)[/tex], [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
- Mean of [tex]\( y \)[/tex], [tex]\(\bar{y}\)[/tex]:
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the deviations from the means:
- Deviations of [tex]\( x \)[/tex] from the mean:
[tex]\[ x_1 - \bar{x} = 0 - 7.5 = -7.5 \][/tex]
[tex]\[ x_2 - \bar{x} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ x_3 - \bar{x} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ x_4 - \bar{x} = 15 - 7.5 = 7.5 \][/tex]
- Deviations of [tex]\( y \)[/tex] from the mean:
[tex]\[ y_1 - \bar{y} = 15 - 7.5 = 7.5 \][/tex]
[tex]\[ y_2 - \bar{y} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ y_3 - \bar{y} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ y_4 - \bar{y} = 0 - 7.5 = -7.5 \][/tex]
4. Calculate the products of the deviations for each pair:
[tex]\[ (-7.5 \times 7.5) = -56.25 \][/tex]
[tex]\[ (-2.5 \times 2.5) = -6.25 \][/tex]
[tex]\[ (2.5 \times -2.5) = -6.25 \][/tex]
[tex]\[ (7.5 \times -7.5) = -56.25 \][/tex]
5. Summing up these products:
[tex]\[ -56.25 + (-6.25) + (-6.25) + (-56.25) = -125 \][/tex]
6. Calculate the sum of squared deviations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x \)[/tex]:
[tex]\[ (-7.5^2) + (-2.5^2) + (2.5^2) + (7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (7.5^2) + (2.5^2) + (-2.5^2) + (-7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
7. Putting it all into the Pearson correlation coefficient formula:
[tex]\[ r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2}} \times \sqrt{\sum{(y_i - \bar{y})^2}}} \][/tex]
Substituting in the sums from above:
[tex]\[ r = \frac{-125}{\sqrt{125} \times \sqrt{125}} = \frac{-125}{125} = -1 \][/tex]
Therefore, the correlation coefficient for the data shown in the table is [tex]\( -1 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.