Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the correlation coefficient for the given data points, we need to use the correlation formula, specifically Pearson’s correlation coefficient. Here’s a step-by-step method to determine this:
1. List the given data points:
- [tex]\( x \)[/tex] values: 0, 5, 10, 15
- [tex]\( y \)[/tex] values: 15, 10, 5, 0
2. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Mean of [tex]\( x \)[/tex], [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
- Mean of [tex]\( y \)[/tex], [tex]\(\bar{y}\)[/tex]:
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the deviations from the means:
- Deviations of [tex]\( x \)[/tex] from the mean:
[tex]\[ x_1 - \bar{x} = 0 - 7.5 = -7.5 \][/tex]
[tex]\[ x_2 - \bar{x} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ x_3 - \bar{x} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ x_4 - \bar{x} = 15 - 7.5 = 7.5 \][/tex]
- Deviations of [tex]\( y \)[/tex] from the mean:
[tex]\[ y_1 - \bar{y} = 15 - 7.5 = 7.5 \][/tex]
[tex]\[ y_2 - \bar{y} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ y_3 - \bar{y} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ y_4 - \bar{y} = 0 - 7.5 = -7.5 \][/tex]
4. Calculate the products of the deviations for each pair:
[tex]\[ (-7.5 \times 7.5) = -56.25 \][/tex]
[tex]\[ (-2.5 \times 2.5) = -6.25 \][/tex]
[tex]\[ (2.5 \times -2.5) = -6.25 \][/tex]
[tex]\[ (7.5 \times -7.5) = -56.25 \][/tex]
5. Summing up these products:
[tex]\[ -56.25 + (-6.25) + (-6.25) + (-56.25) = -125 \][/tex]
6. Calculate the sum of squared deviations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x \)[/tex]:
[tex]\[ (-7.5^2) + (-2.5^2) + (2.5^2) + (7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (7.5^2) + (2.5^2) + (-2.5^2) + (-7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
7. Putting it all into the Pearson correlation coefficient formula:
[tex]\[ r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2}} \times \sqrt{\sum{(y_i - \bar{y})^2}}} \][/tex]
Substituting in the sums from above:
[tex]\[ r = \frac{-125}{\sqrt{125} \times \sqrt{125}} = \frac{-125}{125} = -1 \][/tex]
Therefore, the correlation coefficient for the data shown in the table is [tex]\( -1 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
1. List the given data points:
- [tex]\( x \)[/tex] values: 0, 5, 10, 15
- [tex]\( y \)[/tex] values: 15, 10, 5, 0
2. Calculate the mean of [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- Mean of [tex]\( x \)[/tex], [tex]\(\bar{x}\)[/tex]:
[tex]\[ \bar{x} = \frac{0 + 5 + 10 + 15}{4} = \frac{30}{4} = 7.5 \][/tex]
- Mean of [tex]\( y \)[/tex], [tex]\(\bar{y}\)[/tex]:
[tex]\[ \bar{y} = \frac{15 + 10 + 5 + 0}{4} = \frac{30}{4} = 7.5 \][/tex]
3. Compute the deviations from the means:
- Deviations of [tex]\( x \)[/tex] from the mean:
[tex]\[ x_1 - \bar{x} = 0 - 7.5 = -7.5 \][/tex]
[tex]\[ x_2 - \bar{x} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ x_3 - \bar{x} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ x_4 - \bar{x} = 15 - 7.5 = 7.5 \][/tex]
- Deviations of [tex]\( y \)[/tex] from the mean:
[tex]\[ y_1 - \bar{y} = 15 - 7.5 = 7.5 \][/tex]
[tex]\[ y_2 - \bar{y} = 10 - 7.5 = 2.5 \][/tex]
[tex]\[ y_3 - \bar{y} = 5 - 7.5 = -2.5 \][/tex]
[tex]\[ y_4 - \bar{y} = 0 - 7.5 = -7.5 \][/tex]
4. Calculate the products of the deviations for each pair:
[tex]\[ (-7.5 \times 7.5) = -56.25 \][/tex]
[tex]\[ (-2.5 \times 2.5) = -6.25 \][/tex]
[tex]\[ (2.5 \times -2.5) = -6.25 \][/tex]
[tex]\[ (7.5 \times -7.5) = -56.25 \][/tex]
5. Summing up these products:
[tex]\[ -56.25 + (-6.25) + (-6.25) + (-56.25) = -125 \][/tex]
6. Calculate the sum of squared deviations for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
- For [tex]\( x \)[/tex]:
[tex]\[ (-7.5^2) + (-2.5^2) + (2.5^2) + (7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
- For [tex]\( y \)[/tex]:
[tex]\[ (7.5^2) + (2.5^2) + (-2.5^2) + (-7.5^2) = 56.25 + 6.25 + 6.25 + 56.25 = 125 \][/tex]
7. Putting it all into the Pearson correlation coefficient formula:
[tex]\[ r = \frac{\sum{(x_i - \bar{x})(y_i - \bar{y})}}{\sqrt{\sum{(x_i - \bar{x})^2}} \times \sqrt{\sum{(y_i - \bar{y})^2}}} \][/tex]
Substituting in the sums from above:
[tex]\[ r = \frac{-125}{\sqrt{125} \times \sqrt{125}} = \frac{-125}{125} = -1 \][/tex]
Therefore, the correlation coefficient for the data shown in the table is [tex]\( -1 \)[/tex], indicating a perfect negative linear relationship between [tex]\( x \)[/tex] and [tex]\( y \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.