Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Certainly! Let's solve the equation step by step:
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = 0 \][/tex]
1. Combine the fractions on the left-hand side:
To combine the fractions, we need a common denominator. The common denominator for [tex]\( \frac{1}{x+1} \)[/tex] and [tex]\( \frac{1}{x-3} \)[/tex] is [tex]\((x+1)(x-3)\)[/tex].
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = \frac{(x-3) - (x+1)}{(x+1)(x-3)} \][/tex]
2. Simplify the numerator:
[tex]\[ (x-3) - (x+1) = x - 3 - x - 1 = -4 \][/tex]
So, we have:
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = \frac{-4}{(x+1)(x-3)} \][/tex]
3. Set the simplified equation equal to zero:
[tex]\[ \frac{-4}{(x+1)(x-3)} = 0 \][/tex]
A fraction is equal to zero only if its numerator is zero. Therefore,
[tex]\[ -4 = 0 \][/tex]
This is a contradiction because -4 will never equal 0. Therefore, there are no solutions for [tex]\( x \)[/tex] that satisfy the equation.
As we derived, the equation has no solutions. Thus, there are no values of [tex]\( x \)[/tex] that make the initial equation true.
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = 0 \][/tex]
1. Combine the fractions on the left-hand side:
To combine the fractions, we need a common denominator. The common denominator for [tex]\( \frac{1}{x+1} \)[/tex] and [tex]\( \frac{1}{x-3} \)[/tex] is [tex]\((x+1)(x-3)\)[/tex].
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = \frac{(x-3) - (x+1)}{(x+1)(x-3)} \][/tex]
2. Simplify the numerator:
[tex]\[ (x-3) - (x+1) = x - 3 - x - 1 = -4 \][/tex]
So, we have:
[tex]\[ \frac{1}{x+1} - \frac{1}{x-3} = \frac{-4}{(x+1)(x-3)} \][/tex]
3. Set the simplified equation equal to zero:
[tex]\[ \frac{-4}{(x+1)(x-3)} = 0 \][/tex]
A fraction is equal to zero only if its numerator is zero. Therefore,
[tex]\[ -4 = 0 \][/tex]
This is a contradiction because -4 will never equal 0. Therefore, there are no solutions for [tex]\( x \)[/tex] that satisfy the equation.
As we derived, the equation has no solutions. Thus, there are no values of [tex]\( x \)[/tex] that make the initial equation true.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.