Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Discover in-depth solutions to your questions from a wide range of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve the problem of finding the probability that a randomly selected value from a normal distribution with a mean of 239.5 and a standard deviation of 27 is greater than 258.4, follow these steps:
1. Identify the parameters of the normal distribution:
- The mean ([tex]\(\mu\)[/tex]) is 239.5.
- The standard deviation ([tex]\(\sigma\)[/tex]) is 27.
2. Determine the value for which you need to find the probability:
- The value [tex]\(x = 258.4\)[/tex].
3. Calculate the z-score for the value 258.4:
The z-score formula for a value [tex]\(x\)[/tex] in a normal distribution is given by:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Plugging in the numbers:
[tex]\[ z = \frac{258.4 - 239.5}{27} = \frac{18.9}{27} \approx 0.7 \][/tex]
4. Find the cumulative probability for the calculated z-score using the standard normal distribution table or a cumulative distribution function (CDF):
The cumulative probability [tex]\(P(Z \leq 0.7)\)[/tex] gives the probability that a standard normal variable is less than or equal to 0.7.
5. Calculate the cumulative probability for the z-score 0.7.
The cumulative distribution function value for [tex]\(z = 0.7\)[/tex] is approximately 0.7580. This represents the probability [tex]\(P(X \leq 258.4)\)[/tex].
6. Determine the probability that [tex]\(X\)[/tex] is greater than 258.4:
Since the total area under the normal distribution curve is 1, the area to the right of [tex]\(z = 0.7\)[/tex] is:
[tex]\[ P(X > 258.4) = 1 - P(X \leq 258.4) = 1 - 0.7580 = 0.2420 \][/tex]
Therefore, the probability that a randomly selected value from the distribution is greater than 258.4 is:
[tex]\[ P(X > 258.4) = 0.2420 \][/tex]
1. Identify the parameters of the normal distribution:
- The mean ([tex]\(\mu\)[/tex]) is 239.5.
- The standard deviation ([tex]\(\sigma\)[/tex]) is 27.
2. Determine the value for which you need to find the probability:
- The value [tex]\(x = 258.4\)[/tex].
3. Calculate the z-score for the value 258.4:
The z-score formula for a value [tex]\(x\)[/tex] in a normal distribution is given by:
[tex]\[ z = \frac{x - \mu}{\sigma} \][/tex]
Plugging in the numbers:
[tex]\[ z = \frac{258.4 - 239.5}{27} = \frac{18.9}{27} \approx 0.7 \][/tex]
4. Find the cumulative probability for the calculated z-score using the standard normal distribution table or a cumulative distribution function (CDF):
The cumulative probability [tex]\(P(Z \leq 0.7)\)[/tex] gives the probability that a standard normal variable is less than or equal to 0.7.
5. Calculate the cumulative probability for the z-score 0.7.
The cumulative distribution function value for [tex]\(z = 0.7\)[/tex] is approximately 0.7580. This represents the probability [tex]\(P(X \leq 258.4)\)[/tex].
6. Determine the probability that [tex]\(X\)[/tex] is greater than 258.4:
Since the total area under the normal distribution curve is 1, the area to the right of [tex]\(z = 0.7\)[/tex] is:
[tex]\[ P(X > 258.4) = 1 - P(X \leq 258.4) = 1 - 0.7580 = 0.2420 \][/tex]
Therefore, the probability that a randomly selected value from the distribution is greater than 258.4 is:
[tex]\[ P(X > 258.4) = 0.2420 \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.