Answered

At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Ask your questions and receive precise answers from experienced professionals across different disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Let a and b be real numbers. For this problem, assume that a - b = 4 and a^2 - b^2 = 8.

(a) Find all possible values of ab
(b) Find all possible values of a+b
(c) Find all possible values of a and b


Sagot :

Answer:

Given the equations:

[tex] \sf a - b = 4 [/tex]

[tex] \sf a^2 - b^2 = 8 [/tex]

Part (a): Find all possible values of [tex] \sf ab [/tex]

First, recognize that [tex] \sf a^2 - b^2 [/tex] can be factored as:

[tex] \sf a^2 - b^2 = (a - b)(a + b) [/tex]

Substitute the given value [tex] \sf a - b = 4 [/tex]:

[tex] \sf 8 = 4(a + b) [/tex]

Solve for [tex] \sf a + b [/tex]:

[tex] \sf a + b = \frac{8}{4} = 2 [/tex]

Now, we have two equations:

[tex] \sf a - b = 4 [/tex]

[tex] \sf a + b = 2 [/tex]

Add the two equations to find [tex] \sf a [/tex]:

[tex] \sf (a - b) + (a + b) = 4 + 2 [/tex]

[tex] \sf 2a = 6 [/tex]

[tex] \sf a = 3 [/tex]

Substitute [tex] \sf a = 3 [/tex] back into [tex] \sf a + b = 2 [/tex] to find [tex] \sf b [/tex]:

[tex] \sf 3 + b = 2 [/tex]

[tex] \sf b = 2 - 3 [/tex]

[tex] \sf b = -1 [/tex]

Now, calculate [tex] \sf ab [/tex]:

[tex] \sf ab = 3 \cdot (-1) = -3 [/tex]

So, the correct value of [tex] \sf ab [/tex] is:

[tex] \sf \boxed{-3} [/tex]

Part (b): Find all possible values of [tex] \sf a + b [/tex]

From our earlier solution, we found:

[tex] \sf a + b = 2 [/tex]

Therefore, the possible value of [tex] \sf a + b [/tex] is:

[tex] \sf \boxed{2} [/tex]

Part (c): Find all possible values of [tex] \sf a [/tex] and [tex] \sf b [/tex]

We use the system of equations:

[tex] \sf a + b = 2 [/tex]

[tex] \sf a - b = 4 [/tex]

Solve these equations simultaneously. Add the two equations:

[tex] \sf (a + b) + (a - b) = 2 + 4 [/tex]

[tex] \sf 2a = 6 [/tex]

[tex] \sf a = 3 [/tex]

Now, substitute [tex] \sf a = 3 [/tex] back into [tex] \sf a + b = 2 [/tex]:

[tex] \sf 3 + b = 2 [/tex]

[tex] \sf b = 2 - 3 [/tex]

[tex] \sf b = -1 [/tex]

So, the possible values of [tex] \sf a [/tex] and [tex] \sf b [/tex] are:

[tex] \sf \boxed{a = 3 \text{ and } b = -1} [/tex]

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.