At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Given the equations:
[tex] \sf a - b = 4 [/tex]
[tex] \sf a^2 - b^2 = 8 [/tex]
Part (a): Find all possible values of [tex] \sf ab [/tex]
First, recognize that [tex] \sf a^2 - b^2 [/tex] can be factored as:
[tex] \sf a^2 - b^2 = (a - b)(a + b) [/tex]
Substitute the given value [tex] \sf a - b = 4 [/tex]:
[tex] \sf 8 = 4(a + b) [/tex]
Solve for [tex] \sf a + b [/tex]:
[tex] \sf a + b = \frac{8}{4} = 2 [/tex]
Now, we have two equations:
[tex] \sf a - b = 4 [/tex]
[tex] \sf a + b = 2 [/tex]
Add the two equations to find [tex] \sf a [/tex]:
[tex] \sf (a - b) + (a + b) = 4 + 2 [/tex]
[tex] \sf 2a = 6 [/tex]
[tex] \sf a = 3 [/tex]
Substitute [tex] \sf a = 3 [/tex] back into [tex] \sf a + b = 2 [/tex] to find [tex] \sf b [/tex]:
[tex] \sf 3 + b = 2 [/tex]
[tex] \sf b = 2 - 3 [/tex]
[tex] \sf b = -1 [/tex]
Now, calculate [tex] \sf ab [/tex]:
[tex] \sf ab = 3 \cdot (-1) = -3 [/tex]
So, the correct value of [tex] \sf ab [/tex] is:
[tex] \sf \boxed{-3} [/tex]
Part (b): Find all possible values of [tex] \sf a + b [/tex]
From our earlier solution, we found:
[tex] \sf a + b = 2 [/tex]
Therefore, the possible value of [tex] \sf a + b [/tex] is:
[tex] \sf \boxed{2} [/tex]
Part (c): Find all possible values of [tex] \sf a [/tex] and [tex] \sf b [/tex]
We use the system of equations:
[tex] \sf a + b = 2 [/tex]
[tex] \sf a - b = 4 [/tex]
Solve these equations simultaneously. Add the two equations:
[tex] \sf (a + b) + (a - b) = 2 + 4 [/tex]
[tex] \sf 2a = 6 [/tex]
[tex] \sf a = 3 [/tex]
Now, substitute [tex] \sf a = 3 [/tex] back into [tex] \sf a + b = 2 [/tex]:
[tex] \sf 3 + b = 2 [/tex]
[tex] \sf b = 2 - 3 [/tex]
[tex] \sf b = -1 [/tex]
So, the possible values of [tex] \sf a [/tex] and [tex] \sf b [/tex] are:
[tex] \sf \boxed{a = 3 \text{ and } b = -1} [/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.