Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
[tex]1\, 260[/tex].
Step-by-step explanation:
There are [tex]n![/tex] ways to order [tex]n[/tex] distinct elements without replacement. However, in this question, there are two groups of elements that are not distinct. These duplicates need to be eliminated from the count.
For example, notice that if the two letters "[tex]\texttt{l}[/tex]" in the word are labelled [tex]\texttt{l}_{0}[/tex] and [tex]\texttt{l}_{1}[/tex], there would be [tex]2![/tex] ways to order them within every possible way to arrange the seven letters:
- [tex]\texttt{m i }\texttt{l}_{0}\texttt{ }\texttt{l}_{1}\texttt{ i o n}[/tex].
- [tex]\texttt{m i }\texttt{l}_{1}\texttt{ }\texttt{l}_{0}\texttt{ i o n}[/tex].
Similarly, if the two letters "[tex]\texttt{i}[/tex]" are labelled, there would be [tex]2![/tex] ways to order them within each possible spelling of the word.
Apply the following steps to find the number of distinguishable arrangements of the letters in this [tex]7[/tex]-letter word:
- Find the number of orderings as if all [tex]n = 7[/tex] letters are distinct.
- Divide the count from the previous step by [tex]2![/tex] to account for the letter [tex]\texttt{i}[/tex] , which was repeated for a total of two times.
- Similarly, divide the count by [tex]2![/tex] again to account for the letter [tex]\texttt{l}[/tex].
Hence, there would be a total of [tex]7! / (2! \times 2!) = 1\, 260[/tex] distinguishable arrangements of the letters.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.