At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's consider the given expression:
[tex]\[ \frac{b^{-2}}{a b^{-3}} \][/tex]
We need to simplify this expression step-by-step.
1. Rewrite the expression using properties of exponents:
Recall that [tex]\( b^{-n} = \frac{1}{b^n} \)[/tex]. Therefore:
[tex]\[ b^{-2} = \frac{1}{b^2} \quad \text{and} \quad b^{-3} = \frac{1}{b^3} \][/tex]
2. Substitute these into the given expression:
[tex]\[ \frac{b^{-2}}{a b^{-3}} = \frac{\frac{1}{b^2}}{a \cdot \frac{1}{b^3}} \][/tex]
3. Combine the terms in the denominator:
The denominator [tex]\( a \cdot \frac{1}{b^3} \)[/tex] can be written as [tex]\( \frac{a}{b^3} \)[/tex].
4. Rewrite the expression with this substitution:
[tex]\[ \frac{\frac{1}{b^2}}{\frac{a}{b^3}} \][/tex]
5. Simplify the fraction:
Dividing by a fraction is the same as multiplying by its reciprocal. Thus:
[tex]\[ \frac{\frac{1}{b^2}}{\frac{a}{b^3}} = \frac{1}{b^2} \times \frac{b^3}{a} = \frac{1 \cdot b^3}{b^2 \cdot a} = \frac{b^3}{b^2 a} \][/tex]
6. Simplify the expression further:
[tex]\[ \frac{b^3}{b^2 a} = \frac{b^{3-2}}{a} = \frac{b}{a} \][/tex]
Thus, the simplified expression is:
[tex]\[ \boxed{\frac{b}{a}} \][/tex]
[tex]\[ \frac{b^{-2}}{a b^{-3}} \][/tex]
We need to simplify this expression step-by-step.
1. Rewrite the expression using properties of exponents:
Recall that [tex]\( b^{-n} = \frac{1}{b^n} \)[/tex]. Therefore:
[tex]\[ b^{-2} = \frac{1}{b^2} \quad \text{and} \quad b^{-3} = \frac{1}{b^3} \][/tex]
2. Substitute these into the given expression:
[tex]\[ \frac{b^{-2}}{a b^{-3}} = \frac{\frac{1}{b^2}}{a \cdot \frac{1}{b^3}} \][/tex]
3. Combine the terms in the denominator:
The denominator [tex]\( a \cdot \frac{1}{b^3} \)[/tex] can be written as [tex]\( \frac{a}{b^3} \)[/tex].
4. Rewrite the expression with this substitution:
[tex]\[ \frac{\frac{1}{b^2}}{\frac{a}{b^3}} \][/tex]
5. Simplify the fraction:
Dividing by a fraction is the same as multiplying by its reciprocal. Thus:
[tex]\[ \frac{\frac{1}{b^2}}{\frac{a}{b^3}} = \frac{1}{b^2} \times \frac{b^3}{a} = \frac{1 \cdot b^3}{b^2 \cdot a} = \frac{b^3}{b^2 a} \][/tex]
6. Simplify the expression further:
[tex]\[ \frac{b^3}{b^2 a} = \frac{b^{3-2}}{a} = \frac{b}{a} \][/tex]
Thus, the simplified expression is:
[tex]\[ \boxed{\frac{b}{a}} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.