Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the question of finding the length of one leg of an isosceles right triangle where the hypotenuse measures 10 inches, follow these steps:
1. Understand the properties of an isosceles right triangle: In an isosceles right triangle, the two legs (let's call them [tex]\(a\)[/tex]) are of equal length, and the hypotenuse (let's call it [tex]\(c\)[/tex]) is given. The relationship between the legs and the hypotenuse in this type of triangle can be derived from the Pythagorean theorem.
2. Use the Pythagorean theorem: In an isosceles right triangle, the Pythagorean theorem states that:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Since both legs are equal, we can simplify this to:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Solve for [tex]\(a\)[/tex]:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
Taking the square root of both sides gives:
[tex]\[ a = \sqrt{\frac{c^2}{2}} = \frac{c}{\sqrt{2}} \][/tex]
Substitute the given hypotenuse ([tex]\(c = 10\)[/tex] inches):
[tex]\[ a = \frac{10}{\sqrt{2}} \][/tex]
4. Simplify the expression: Although [tex]\(\frac{10}{\sqrt{2}}\)[/tex] is already simplified, let’s check if it matches one of the given options. Notice that none of the options involve further simplification or rationalization of the denominator.
5. Identify the correct option: The expression [tex]\(\frac{10}{\sqrt{2}}\)[/tex] corresponds directly to one of the given answer choices.
Therefore, the correct choice is:
[tex]\[ \boxed{\frac{10}{\sqrt{2}}} \][/tex]
The length of one leg of the isosceles right triangle is indeed:
[tex]\[ \boxed{\frac{10}{\sqrt{2}}} \][/tex]
Given the provided Python solution, the computed numerical result of this expression is approximately 7.071067811865475 inches.
1. Understand the properties of an isosceles right triangle: In an isosceles right triangle, the two legs (let's call them [tex]\(a\)[/tex]) are of equal length, and the hypotenuse (let's call it [tex]\(c\)[/tex]) is given. The relationship between the legs and the hypotenuse in this type of triangle can be derived from the Pythagorean theorem.
2. Use the Pythagorean theorem: In an isosceles right triangle, the Pythagorean theorem states that:
[tex]\[ a^2 + a^2 = c^2 \][/tex]
Since both legs are equal, we can simplify this to:
[tex]\[ 2a^2 = c^2 \][/tex]
3. Solve for [tex]\(a\)[/tex]:
[tex]\[ a^2 = \frac{c^2}{2} \][/tex]
Taking the square root of both sides gives:
[tex]\[ a = \sqrt{\frac{c^2}{2}} = \frac{c}{\sqrt{2}} \][/tex]
Substitute the given hypotenuse ([tex]\(c = 10\)[/tex] inches):
[tex]\[ a = \frac{10}{\sqrt{2}} \][/tex]
4. Simplify the expression: Although [tex]\(\frac{10}{\sqrt{2}}\)[/tex] is already simplified, let’s check if it matches one of the given options. Notice that none of the options involve further simplification or rationalization of the denominator.
5. Identify the correct option: The expression [tex]\(\frac{10}{\sqrt{2}}\)[/tex] corresponds directly to one of the given answer choices.
Therefore, the correct choice is:
[tex]\[ \boxed{\frac{10}{\sqrt{2}}} \][/tex]
The length of one leg of the isosceles right triangle is indeed:
[tex]\[ \boxed{\frac{10}{\sqrt{2}}} \][/tex]
Given the provided Python solution, the computed numerical result of this expression is approximately 7.071067811865475 inches.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.