Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Which expression is equivalent to [tex]\left(\frac{x^{-4} y}{x^{-9} y^5}\right)^{-2}[/tex]? Assume [tex]x \neq 0, y \neq 0[/tex].

A. [tex]\frac{y^8}{x^{10}}[/tex]

B. [tex]\frac{x^5}{y^7}[/tex]

C. [tex]\frac{x^5}{y^4}[/tex]

D. [tex]\frac{x}{y^7}[/tex]


Sagot :

We are given the expression [tex]\(\left(\frac{x^{-4} y}{x^{-9} y^5}\right)^{-2}\)[/tex] and need to find an equivalent expression.

First, let's simplify the expression inside the parentheses:

1. Simplify the [tex]\(x\)[/tex]-terms:
[tex]\[ \frac{x^{-4}}{x^{-9}} = x^{-4 - (-9)} = x^{-4 + 9} = x^5 \][/tex]

2. Simplify the [tex]\(y\)[/tex]-terms:
[tex]\[ \frac{y}{y^5} = y^{1 - 5} = y^{-4} \][/tex]

After simplifying the terms, we are left with:
[tex]\[ \left(x^5 y^{-4}\right)^{-2} \][/tex]

Next, we apply the negative exponent -2 to both the [tex]\(x\)[/tex]-term and the [tex]\(y\)[/tex]-term:

1. Apply [tex]\(-2\)[/tex] to [tex]\(\bm{x^5}\)[/tex]:
[tex]\[ (x^5)^{-2} = x^{5 \times (-2)} = x^{-10} \][/tex]

2. Apply [tex]\(-2\)[/tex] to [tex]\(\bm{y^{-4}}\)[/tex]:
[tex]\[ (y^{-4})^{-2} = y^{-4 \times (-2)} = y^8 \][/tex]

Putting these parts together, we get:
[tex]\[ x^{-10} y^8 \][/tex]

This can be rewritten as:
[tex]\[ \frac{y^8}{x^{10}} \][/tex]

Therefore, the expression equivalent to [tex]\(\left(\frac{x^{-4} y}{x^{-9} y^5}\right)^{-2}\)[/tex] is:
[tex]\[ \boxed{\frac{y^8}{x^{10}}} \][/tex]

Thus, the correct answer is the first option:
[tex]\(\frac{y^8}{x^{10}}\)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.