At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.

Given that [tex]\left(2^1\right)^n=\frac{2^x}{8^y}[/tex], express [tex]n[/tex] in terms of [tex]x[/tex] and [tex]y[/tex].

Sagot :

Let's start by examining the given equation:

[tex]\[ \left(2^1\right)^n = \frac{2^x}{8^y} \][/tex]

First, simplify the left-hand side of the equation. Since [tex]\(\left(2^1\right)^n\)[/tex] is simply [tex]\(2^n\)[/tex], the equation becomes:

[tex]\[ 2^n = \frac{2^x}{8^y} \][/tex]

Next, simplify the right-hand side. Notice that [tex]\(8\)[/tex] can be expressed as a power of [tex]\(2\)[/tex]:

[tex]\[ 8 = 2^3 \][/tex]

Therefore, [tex]\(8^y\)[/tex] can be expressed as:

[tex]\[ 8^y = (2^3)^y = 2^{3y} \][/tex]

So, the equation now is:

[tex]\[ 2^n = \frac{2^x}{2^{3y}} \][/tex]

When dividing exponential expressions with the same base, you subtract the exponents:

[tex]\[ \frac{2^x}{2^{3y}} = 2^{x - 3y} \][/tex]

Now, the equation is:

[tex]\[ 2^n = 2^{x - 3y} \][/tex]

Since the bases are the same, we can set the exponents equal to each other:

[tex]\[ n = x - 3y \][/tex]

Thus, expressing [tex]\(n\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we have:

[tex]\[ n = x - 3y \][/tex]