At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's start by examining the given equation:
[tex]\[ \left(2^1\right)^n = \frac{2^x}{8^y} \][/tex]
First, simplify the left-hand side of the equation. Since [tex]\(\left(2^1\right)^n\)[/tex] is simply [tex]\(2^n\)[/tex], the equation becomes:
[tex]\[ 2^n = \frac{2^x}{8^y} \][/tex]
Next, simplify the right-hand side. Notice that [tex]\(8\)[/tex] can be expressed as a power of [tex]\(2\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
Therefore, [tex]\(8^y\)[/tex] can be expressed as:
[tex]\[ 8^y = (2^3)^y = 2^{3y} \][/tex]
So, the equation now is:
[tex]\[ 2^n = \frac{2^x}{2^{3y}} \][/tex]
When dividing exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{2^x}{2^{3y}} = 2^{x - 3y} \][/tex]
Now, the equation is:
[tex]\[ 2^n = 2^{x - 3y} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ n = x - 3y \][/tex]
Thus, expressing [tex]\(n\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we have:
[tex]\[ n = x - 3y \][/tex]
[tex]\[ \left(2^1\right)^n = \frac{2^x}{8^y} \][/tex]
First, simplify the left-hand side of the equation. Since [tex]\(\left(2^1\right)^n\)[/tex] is simply [tex]\(2^n\)[/tex], the equation becomes:
[tex]\[ 2^n = \frac{2^x}{8^y} \][/tex]
Next, simplify the right-hand side. Notice that [tex]\(8\)[/tex] can be expressed as a power of [tex]\(2\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
Therefore, [tex]\(8^y\)[/tex] can be expressed as:
[tex]\[ 8^y = (2^3)^y = 2^{3y} \][/tex]
So, the equation now is:
[tex]\[ 2^n = \frac{2^x}{2^{3y}} \][/tex]
When dividing exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{2^x}{2^{3y}} = 2^{x - 3y} \][/tex]
Now, the equation is:
[tex]\[ 2^n = 2^{x - 3y} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ n = x - 3y \][/tex]
Thus, expressing [tex]\(n\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we have:
[tex]\[ n = x - 3y \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.