Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Let's start by examining the given equation:
[tex]\[ \left(2^1\right)^n = \frac{2^x}{8^y} \][/tex]
First, simplify the left-hand side of the equation. Since [tex]\(\left(2^1\right)^n\)[/tex] is simply [tex]\(2^n\)[/tex], the equation becomes:
[tex]\[ 2^n = \frac{2^x}{8^y} \][/tex]
Next, simplify the right-hand side. Notice that [tex]\(8\)[/tex] can be expressed as a power of [tex]\(2\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
Therefore, [tex]\(8^y\)[/tex] can be expressed as:
[tex]\[ 8^y = (2^3)^y = 2^{3y} \][/tex]
So, the equation now is:
[tex]\[ 2^n = \frac{2^x}{2^{3y}} \][/tex]
When dividing exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{2^x}{2^{3y}} = 2^{x - 3y} \][/tex]
Now, the equation is:
[tex]\[ 2^n = 2^{x - 3y} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ n = x - 3y \][/tex]
Thus, expressing [tex]\(n\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we have:
[tex]\[ n = x - 3y \][/tex]
[tex]\[ \left(2^1\right)^n = \frac{2^x}{8^y} \][/tex]
First, simplify the left-hand side of the equation. Since [tex]\(\left(2^1\right)^n\)[/tex] is simply [tex]\(2^n\)[/tex], the equation becomes:
[tex]\[ 2^n = \frac{2^x}{8^y} \][/tex]
Next, simplify the right-hand side. Notice that [tex]\(8\)[/tex] can be expressed as a power of [tex]\(2\)[/tex]:
[tex]\[ 8 = 2^3 \][/tex]
Therefore, [tex]\(8^y\)[/tex] can be expressed as:
[tex]\[ 8^y = (2^3)^y = 2^{3y} \][/tex]
So, the equation now is:
[tex]\[ 2^n = \frac{2^x}{2^{3y}} \][/tex]
When dividing exponential expressions with the same base, you subtract the exponents:
[tex]\[ \frac{2^x}{2^{3y}} = 2^{x - 3y} \][/tex]
Now, the equation is:
[tex]\[ 2^n = 2^{x - 3y} \][/tex]
Since the bases are the same, we can set the exponents equal to each other:
[tex]\[ n = x - 3y \][/tex]
Thus, expressing [tex]\(n\)[/tex] in terms of [tex]\(x\)[/tex] and [tex]\(y\)[/tex], we have:
[tex]\[ n = x - 3y \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.