At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Determine whether the pair of lines is parallel, perpendicular, or neither.

[tex]\[
\begin{array}{l}
y = 2x + 4 \\
x - 2y = -5
\end{array}
\][/tex]

A. Parallel

B. Perpendicular

C. Neither


Sagot :

To determine whether the given pair of lines are parallel, perpendicular, or neither, we need to consider the slopes of the lines.

The equations of the lines are:
1. [tex]\( y = 2x + 4 \)[/tex]
2. [tex]\( x - 2y = -5 \)[/tex]

Step 1: Identify the slope of the first line.

The first line is already in slope-intercept form [tex]\( y = mx + b \)[/tex] where [tex]\( m \)[/tex] is the slope.

For the first line, [tex]\( y = 2x + 4 \)[/tex], the slope (m1) is [tex]\( 2 \)[/tex].

Step 2: Convert the second line to slope-intercept form [tex]\( y = mx + b \)[/tex].

Starting with the second equation:
[tex]\[ x - 2y = -5 \][/tex]

First, solve for [tex]\( y \)[/tex]:
[tex]\[ -2y = -x - 5 \][/tex]
[tex]\[ y = \frac{-x - 5}{-2} \][/tex]
[tex]\[ y = \frac{1}{2}x + \frac{5}{2} \][/tex]

So, the second line in slope-intercept form is:
[tex]\[ y = 0.5x + 2.5 \][/tex]
The slope (m2) of this line is [tex]\( 0.5 \)[/tex].

Step 3: Compare the slopes to determine the relationship between the lines.

- If the slopes are equal ([tex]\( m_1 = m_2 \)[/tex]), the lines are parallel.
- If the slopes are negative reciprocals of each other ([tex]\( m_1 \cdot m_2 = -1 \)[/tex]), the lines are perpendicular.
- If neither condition is met, the lines are neither parallel nor perpendicular.

For our lines:
- [tex]\( m_1 = 2 \)[/tex]
- [tex]\( m_2 = 0.5 \)[/tex]

Now check the conditions:
- [tex]\( m_1 \neq m_2 \)[/tex], so the lines are not parallel.
- [tex]\( m_1 \cdot m_2 = 2 \cdot 0.5 = 1 \neq -1 \)[/tex], so the lines are not perpendicular.

Since neither condition for parallel or perpendicular is met, the lines are neither parallel nor perpendicular.

Answer:
C. neither
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.