Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Sure! Let's use the slope-intercept form to graph the given equation [tex]\(3x + 2y = 6\)[/tex].
### Step-by-Step Solution:
1. Understand the Given Equation:
The equation provided is in standard form: [tex]\(3x + 2y = 6\)[/tex].
2. Convert to the Slope-Intercept Form:
To convert the equation to the slope-intercept form, which is [tex]\(y = mx + b\)[/tex] where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept, we need to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + 2y = 6 \][/tex]
First, isolate [tex]\(2y\)[/tex] on one side of the equation:
[tex]\[ 2y = -3x + 6 \][/tex]
Next, divide every term by 2:
[tex]\[ y = \frac{-3}{2}x + 3 \][/tex]
3. Identify the Slope and Y-Intercept:
From the slope-intercept form [tex]\(y = \frac{-3}{2}x + 3\)[/tex], we identify:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-\frac{3}{2}\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is 3.
4. Graphing the Equation:
- Plot the Y-Intercept: Start by plotting the y-intercept on the graph. Since [tex]\(b = 3\)[/tex], place a point at [tex]\((0, 3)\)[/tex] on the y-axis.
- Use the Slope to Find Another Point: The slope is [tex]\(-\frac{3}{2}\)[/tex], which means for every 2 units you move to the right (positive direction of the x-axis), you move 3 units down (negative direction of the y-axis).
From the y-intercept point [tex]\((0, 3)\)[/tex]:
- Move 2 units to the right to [tex]\((2, 3)\)[/tex].
- Then move 3 units down to [tex]\((2, 0)\)[/tex].
- Draw the Line: With the points [tex]\((0, 3)\)[/tex] and [tex]\((2, 0)\)[/tex] plotted, draw a straight line through these points to represent the equation [tex]\(y = \frac{-3}{2}x + 3\)[/tex].
### Conclusion
To sum up, the graph of the equation [tex]\(3x + 2y = 6\)[/tex] is a straight line that crosses the y-axis at 3 (the y-intercept) and has a slope of [tex]\(-\frac{3}{2}\)[/tex].
### Step-by-Step Solution:
1. Understand the Given Equation:
The equation provided is in standard form: [tex]\(3x + 2y = 6\)[/tex].
2. Convert to the Slope-Intercept Form:
To convert the equation to the slope-intercept form, which is [tex]\(y = mx + b\)[/tex] where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the y-intercept, we need to solve for [tex]\(y\)[/tex]:
[tex]\[ 3x + 2y = 6 \][/tex]
First, isolate [tex]\(2y\)[/tex] on one side of the equation:
[tex]\[ 2y = -3x + 6 \][/tex]
Next, divide every term by 2:
[tex]\[ y = \frac{-3}{2}x + 3 \][/tex]
3. Identify the Slope and Y-Intercept:
From the slope-intercept form [tex]\(y = \frac{-3}{2}x + 3\)[/tex], we identify:
- The slope ([tex]\(m\)[/tex]) is [tex]\(-\frac{3}{2}\)[/tex].
- The y-intercept ([tex]\(b\)[/tex]) is 3.
4. Graphing the Equation:
- Plot the Y-Intercept: Start by plotting the y-intercept on the graph. Since [tex]\(b = 3\)[/tex], place a point at [tex]\((0, 3)\)[/tex] on the y-axis.
- Use the Slope to Find Another Point: The slope is [tex]\(-\frac{3}{2}\)[/tex], which means for every 2 units you move to the right (positive direction of the x-axis), you move 3 units down (negative direction of the y-axis).
From the y-intercept point [tex]\((0, 3)\)[/tex]:
- Move 2 units to the right to [tex]\((2, 3)\)[/tex].
- Then move 3 units down to [tex]\((2, 0)\)[/tex].
- Draw the Line: With the points [tex]\((0, 3)\)[/tex] and [tex]\((2, 0)\)[/tex] plotted, draw a straight line through these points to represent the equation [tex]\(y = \frac{-3}{2}x + 3\)[/tex].
### Conclusion
To sum up, the graph of the equation [tex]\(3x + 2y = 6\)[/tex] is a straight line that crosses the y-axis at 3 (the y-intercept) and has a slope of [tex]\(-\frac{3}{2}\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.