Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the period and amplitude of the function [tex]\( y = 4 \sin 6x \)[/tex], let's follow these steps:
1. Identify the amplitude:
- The amplitude of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is given by the absolute value of the coefficient of the sine function.
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient of the sine term is 4.
- Therefore, the amplitude is [tex]\( \boxed{4} \)[/tex].
2. Determine the period:
- The period of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 6.
- Substituting [tex]\( B = 6 \)[/tex] into the period formula, we get:
[tex]\[ \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3} \][/tex]
- Thus, the exact value of the period is [tex]\( \boxed{\frac{\pi}{3}} \)[/tex].
So, the exact values are:
- Amplitude: [tex]\( \boxed{4} \)[/tex]
- Period: [tex]\( \boxed{\frac{\pi}{3}} \)[/tex]
1. Identify the amplitude:
- The amplitude of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is given by the absolute value of the coefficient of the sine function.
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient of the sine term is 4.
- Therefore, the amplitude is [tex]\( \boxed{4} \)[/tex].
2. Determine the period:
- The period of a sine function [tex]\( y = A \sin(Bx) \)[/tex] is calculated using the formula:
[tex]\[ \text{Period} = \frac{2\pi}{B} \][/tex]
- In the given function [tex]\( y = 4 \sin 6x \)[/tex], the coefficient [tex]\( B \)[/tex] in front of [tex]\( x \)[/tex] is 6.
- Substituting [tex]\( B = 6 \)[/tex] into the period formula, we get:
[tex]\[ \text{Period} = \frac{2\pi}{6} = \frac{\pi}{3} \][/tex]
- Thus, the exact value of the period is [tex]\( \boxed{\frac{\pi}{3}} \)[/tex].
So, the exact values are:
- Amplitude: [tex]\( \boxed{4} \)[/tex]
- Period: [tex]\( \boxed{\frac{\pi}{3}} \)[/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.