Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
Certainly! Let's break down the problem step by step.
### Step 1: Define the functions
We are given two functions:
[tex]\[ f(x) = 3x \][/tex]
[tex]\[ g(x) = \sqrt{x - 1} \][/tex]
### Step 2: Combine the functions
We need to find the formula for [tex]\((f + g)(x)\)[/tex]. This is done by adding the two functions together:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
So, the combined function is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
This is the simplified formula for the combined function.
### Step 3: Determine the domain
To find the domain of [tex]\((f + g)(x)\)[/tex], we need to consider the domains of both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
1. Domain of [tex]\(f(x) = 3x\)[/tex]:
- The function [tex]\(f(x)\)[/tex] is a linear function and is defined for all real numbers. Therefore, the domain of [tex]\(f(x)\)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex].
2. Domain of [tex]\(g(x) = \sqrt{x - 1}\)[/tex]:
- The square root function [tex]\(\sqrt{x - 1}\)[/tex] is defined only when the expression inside the square root is non-negative. Hence, [tex]\( x - 1 \geq 0 \)[/tex].
- Solving [tex]\( x - 1 \geq 0 \)[/tex], we get [tex]\( x \geq 1 \)[/tex].
Since [tex]\(f(x)\)[/tex] is defined for all [tex]\(x\)[/tex] and [tex]\(g(x)\)[/tex] is defined for [tex]\(x \geq 1\)[/tex], the domain of the combined function [tex]\((f + g)(x)\)[/tex] is where both functions are defined.
Therefore, the domain of [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
### Final Answer
1. The formula for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
2. The domain for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
So the complete solution to the problem is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \text{, Domain: } x \geq 1 \][/tex]
If you have any more questions, feel free to ask!
### Step 1: Define the functions
We are given two functions:
[tex]\[ f(x) = 3x \][/tex]
[tex]\[ g(x) = \sqrt{x - 1} \][/tex]
### Step 2: Combine the functions
We need to find the formula for [tex]\((f + g)(x)\)[/tex]. This is done by adding the two functions together:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
So, the combined function is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
This is the simplified formula for the combined function.
### Step 3: Determine the domain
To find the domain of [tex]\((f + g)(x)\)[/tex], we need to consider the domains of both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
1. Domain of [tex]\(f(x) = 3x\)[/tex]:
- The function [tex]\(f(x)\)[/tex] is a linear function and is defined for all real numbers. Therefore, the domain of [tex]\(f(x)\)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex].
2. Domain of [tex]\(g(x) = \sqrt{x - 1}\)[/tex]:
- The square root function [tex]\(\sqrt{x - 1}\)[/tex] is defined only when the expression inside the square root is non-negative. Hence, [tex]\( x - 1 \geq 0 \)[/tex].
- Solving [tex]\( x - 1 \geq 0 \)[/tex], we get [tex]\( x \geq 1 \)[/tex].
Since [tex]\(f(x)\)[/tex] is defined for all [tex]\(x\)[/tex] and [tex]\(g(x)\)[/tex] is defined for [tex]\(x \geq 1\)[/tex], the domain of the combined function [tex]\((f + g)(x)\)[/tex] is where both functions are defined.
Therefore, the domain of [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
### Final Answer
1. The formula for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
2. The domain for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
So the complete solution to the problem is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \text{, Domain: } x \geq 1 \][/tex]
If you have any more questions, feel free to ask!
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.