Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's break down the problem step by step.
### Step 1: Define the functions
We are given two functions:
[tex]\[ f(x) = 3x \][/tex]
[tex]\[ g(x) = \sqrt{x - 1} \][/tex]
### Step 2: Combine the functions
We need to find the formula for [tex]\((f + g)(x)\)[/tex]. This is done by adding the two functions together:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
So, the combined function is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
This is the simplified formula for the combined function.
### Step 3: Determine the domain
To find the domain of [tex]\((f + g)(x)\)[/tex], we need to consider the domains of both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
1. Domain of [tex]\(f(x) = 3x\)[/tex]:
- The function [tex]\(f(x)\)[/tex] is a linear function and is defined for all real numbers. Therefore, the domain of [tex]\(f(x)\)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex].
2. Domain of [tex]\(g(x) = \sqrt{x - 1}\)[/tex]:
- The square root function [tex]\(\sqrt{x - 1}\)[/tex] is defined only when the expression inside the square root is non-negative. Hence, [tex]\( x - 1 \geq 0 \)[/tex].
- Solving [tex]\( x - 1 \geq 0 \)[/tex], we get [tex]\( x \geq 1 \)[/tex].
Since [tex]\(f(x)\)[/tex] is defined for all [tex]\(x\)[/tex] and [tex]\(g(x)\)[/tex] is defined for [tex]\(x \geq 1\)[/tex], the domain of the combined function [tex]\((f + g)(x)\)[/tex] is where both functions are defined.
Therefore, the domain of [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
### Final Answer
1. The formula for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
2. The domain for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
So the complete solution to the problem is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \text{, Domain: } x \geq 1 \][/tex]
If you have any more questions, feel free to ask!
### Step 1: Define the functions
We are given two functions:
[tex]\[ f(x) = 3x \][/tex]
[tex]\[ g(x) = \sqrt{x - 1} \][/tex]
### Step 2: Combine the functions
We need to find the formula for [tex]\((f + g)(x)\)[/tex]. This is done by adding the two functions together:
[tex]\[ (f + g)(x) = f(x) + g(x) \][/tex]
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
So, the combined function is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
This is the simplified formula for the combined function.
### Step 3: Determine the domain
To find the domain of [tex]\((f + g)(x)\)[/tex], we need to consider the domains of both [tex]\(f(x)\)[/tex] and [tex]\(g(x)\)[/tex].
1. Domain of [tex]\(f(x) = 3x\)[/tex]:
- The function [tex]\(f(x)\)[/tex] is a linear function and is defined for all real numbers. Therefore, the domain of [tex]\(f(x)\)[/tex] is all real numbers, [tex]\( \mathbb{R} \)[/tex].
2. Domain of [tex]\(g(x) = \sqrt{x - 1}\)[/tex]:
- The square root function [tex]\(\sqrt{x - 1}\)[/tex] is defined only when the expression inside the square root is non-negative. Hence, [tex]\( x - 1 \geq 0 \)[/tex].
- Solving [tex]\( x - 1 \geq 0 \)[/tex], we get [tex]\( x \geq 1 \)[/tex].
Since [tex]\(f(x)\)[/tex] is defined for all [tex]\(x\)[/tex] and [tex]\(g(x)\)[/tex] is defined for [tex]\(x \geq 1\)[/tex], the domain of the combined function [tex]\((f + g)(x)\)[/tex] is where both functions are defined.
Therefore, the domain of [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
### Final Answer
1. The formula for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \][/tex]
2. The domain for [tex]\((f + g)(x)\)[/tex] is:
[tex]\[ x \geq 1 \][/tex]
So the complete solution to the problem is:
[tex]\[ (f + g)(x) = 3x + \sqrt{x - 1} \text{, Domain: } x \geq 1 \][/tex]
If you have any more questions, feel free to ask!
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.