Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the type of relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] from the given data in Table 1-2, we can follow these steps:
1. Identify the Data Points: Let's start by writing down the given pairs of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] values:
- Point A: [tex]\( (5, 18) \)[/tex]
- Point B: [tex]\( (12, 16) \)[/tex]
- Point C: [tex]\( (18, 14) \)[/tex]
- Point D: [tex]\( (30, 12) \)[/tex]
2. Calculate the Correlation Coefficient: The correlation coefficient [tex]\(r\)[/tex] quantifies the strength and direction of the linear relationship between two variables. The formula for the Pearson correlation coefficient [tex]\(r\)[/tex] is:
[tex]\[ r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} \][/tex]
where:
- [tex]\(X_i\)[/tex] and [tex]\(Y_i\)[/tex] are the individual data points.
- [tex]\(\bar{X}\)[/tex] and [tex]\(\bar{Y}\)[/tex] are the means of the [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] data points.
From this calculation, we obtain the correlation coefficient which is approximately [tex]\(-0.987\)[/tex].
3. Interpret the Correlation Coefficient:
- If [tex]\(r > 0\)[/tex], it indicates a direct (positive) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] increases.
- If [tex]\(r = 0\)[/tex], it indicates that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are independent; there is no linear relationship between them.
- If [tex]\(r < 0\)[/tex], it indicates an inverse (negative) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] decreases.
- If [tex]\(r\)[/tex] is very close to 0, it suggests no linear relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] within the given data.
The calculated correlation coefficient is [tex]\(-0.987\)[/tex], which is less than 0 and indicates a strong inverse relationship.
4. Determine the Type of Relationship: Based on the value of the correlation coefficient [tex]\(-0.987\)[/tex], we can conclude that there is a strong inverse relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex].
Therefore, the type of relationship that exists between variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] is:
d. inverse
1. Identify the Data Points: Let's start by writing down the given pairs of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] values:
- Point A: [tex]\( (5, 18) \)[/tex]
- Point B: [tex]\( (12, 16) \)[/tex]
- Point C: [tex]\( (18, 14) \)[/tex]
- Point D: [tex]\( (30, 12) \)[/tex]
2. Calculate the Correlation Coefficient: The correlation coefficient [tex]\(r\)[/tex] quantifies the strength and direction of the linear relationship between two variables. The formula for the Pearson correlation coefficient [tex]\(r\)[/tex] is:
[tex]\[ r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} \][/tex]
where:
- [tex]\(X_i\)[/tex] and [tex]\(Y_i\)[/tex] are the individual data points.
- [tex]\(\bar{X}\)[/tex] and [tex]\(\bar{Y}\)[/tex] are the means of the [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] data points.
From this calculation, we obtain the correlation coefficient which is approximately [tex]\(-0.987\)[/tex].
3. Interpret the Correlation Coefficient:
- If [tex]\(r > 0\)[/tex], it indicates a direct (positive) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] increases.
- If [tex]\(r = 0\)[/tex], it indicates that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are independent; there is no linear relationship between them.
- If [tex]\(r < 0\)[/tex], it indicates an inverse (negative) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] decreases.
- If [tex]\(r\)[/tex] is very close to 0, it suggests no linear relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] within the given data.
The calculated correlation coefficient is [tex]\(-0.987\)[/tex], which is less than 0 and indicates a strong inverse relationship.
4. Determine the Type of Relationship: Based on the value of the correlation coefficient [tex]\(-0.987\)[/tex], we can conclude that there is a strong inverse relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex].
Therefore, the type of relationship that exists between variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] is:
d. inverse
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.