Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the type of relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] from the given data in Table 1-2, we can follow these steps:
1. Identify the Data Points: Let's start by writing down the given pairs of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] values:
- Point A: [tex]\( (5, 18) \)[/tex]
- Point B: [tex]\( (12, 16) \)[/tex]
- Point C: [tex]\( (18, 14) \)[/tex]
- Point D: [tex]\( (30, 12) \)[/tex]
2. Calculate the Correlation Coefficient: The correlation coefficient [tex]\(r\)[/tex] quantifies the strength and direction of the linear relationship between two variables. The formula for the Pearson correlation coefficient [tex]\(r\)[/tex] is:
[tex]\[ r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} \][/tex]
where:
- [tex]\(X_i\)[/tex] and [tex]\(Y_i\)[/tex] are the individual data points.
- [tex]\(\bar{X}\)[/tex] and [tex]\(\bar{Y}\)[/tex] are the means of the [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] data points.
From this calculation, we obtain the correlation coefficient which is approximately [tex]\(-0.987\)[/tex].
3. Interpret the Correlation Coefficient:
- If [tex]\(r > 0\)[/tex], it indicates a direct (positive) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] increases.
- If [tex]\(r = 0\)[/tex], it indicates that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are independent; there is no linear relationship between them.
- If [tex]\(r < 0\)[/tex], it indicates an inverse (negative) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] decreases.
- If [tex]\(r\)[/tex] is very close to 0, it suggests no linear relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] within the given data.
The calculated correlation coefficient is [tex]\(-0.987\)[/tex], which is less than 0 and indicates a strong inverse relationship.
4. Determine the Type of Relationship: Based on the value of the correlation coefficient [tex]\(-0.987\)[/tex], we can conclude that there is a strong inverse relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex].
Therefore, the type of relationship that exists between variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] is:
d. inverse
1. Identify the Data Points: Let's start by writing down the given pairs of [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] values:
- Point A: [tex]\( (5, 18) \)[/tex]
- Point B: [tex]\( (12, 16) \)[/tex]
- Point C: [tex]\( (18, 14) \)[/tex]
- Point D: [tex]\( (30, 12) \)[/tex]
2. Calculate the Correlation Coefficient: The correlation coefficient [tex]\(r\)[/tex] quantifies the strength and direction of the linear relationship between two variables. The formula for the Pearson correlation coefficient [tex]\(r\)[/tex] is:
[tex]\[ r = \frac{\sum (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum (X_i - \bar{X})^2 \sum (Y_i - \bar{Y})^2}} \][/tex]
where:
- [tex]\(X_i\)[/tex] and [tex]\(Y_i\)[/tex] are the individual data points.
- [tex]\(\bar{X}\)[/tex] and [tex]\(\bar{Y}\)[/tex] are the means of the [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] data points.
From this calculation, we obtain the correlation coefficient which is approximately [tex]\(-0.987\)[/tex].
3. Interpret the Correlation Coefficient:
- If [tex]\(r > 0\)[/tex], it indicates a direct (positive) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] increases.
- If [tex]\(r = 0\)[/tex], it indicates that [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] are independent; there is no linear relationship between them.
- If [tex]\(r < 0\)[/tex], it indicates an inverse (negative) relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex]; as [tex]\(X\)[/tex] increases, [tex]\(Y\)[/tex] decreases.
- If [tex]\(r\)[/tex] is very close to 0, it suggests no linear relationship between [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] within the given data.
The calculated correlation coefficient is [tex]\(-0.987\)[/tex], which is less than 0 and indicates a strong inverse relationship.
4. Determine the Type of Relationship: Based on the value of the correlation coefficient [tex]\(-0.987\)[/tex], we can conclude that there is a strong inverse relationship between the variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex].
Therefore, the type of relationship that exists between variables [tex]\(X\)[/tex] and [tex]\(Y\)[/tex] is:
d. inverse
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.