Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

Find the perimeter of the triangle whose vertices are [tex]$(2, -3)$[/tex], [tex]$(-7, 0)$[/tex], and [tex][tex]$(-3, -4)$[/tex][/tex].

Write the exact answer. Do not round.

Answer:


Sagot :

To find the perimeter of the triangle whose vertices are [tex]\((2, -3)\)[/tex], [tex]\((-7, 0)\)[/tex], and [tex]\((-3, -4)\)[/tex], we need to calculate the lengths of each side of the triangle and then sum these lengths.

### Step 1: Calculate the Length of Each Side

The distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] can be calculated using the distance formula:
[tex]\[ d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

#### Side 1: Between [tex]\((2, -3)\)[/tex] and [tex]\((-7, 0)\)[/tex]
Use the distance formula:
[tex]\[ \text{Side 1} = \sqrt{((-7) - 2)^2 + (0 - (-3))^2} = \sqrt{(-9)^2 + 3^2} = \sqrt{81 + 9} = \sqrt{90} = 3\sqrt{10} \][/tex]

#### Side 2: Between [tex]\((-7, 0)\)[/tex] and [tex]\((-3, -4)\)[/tex]
Use the distance formula:
[tex]\[ \text{Side 2} = \sqrt{((-3) - (-7))^2 + ((-4) - 0)^2} = \sqrt{(4)^2 + (-4)^2} = \sqrt{16 + 16} = \sqrt{32} = 4\sqrt{2} \][/tex]

#### Side 3: Between [tex]\((-3, -4)\)[/tex] and [tex]\((2, -3)\)[/tex]
Use the distance formula:
[tex]\[ \text{Side 3} = \sqrt{(2 - (-3))^2 + (-3 - (-4))^2} = \sqrt{(5)^2 + 1^2} = \sqrt{25 + 1} = \sqrt{26} \][/tex]

### Step 2: Calculate the Perimeter

The perimeter [tex]\(P\)[/tex] of the triangle is the sum of the lengths of its sides:
[tex]\[ P = \text{Side 1} + \text{Side 2} + \text{Side 3} \][/tex]
Substituting the calculated lengths:
[tex]\[ P = 3\sqrt{10} + 4\sqrt{2} + \sqrt{26} \][/tex]

The exact perimeter of the triangle is:
[tex]\[ 3\sqrt{10} + 4\sqrt{2} + \sqrt{26} \][/tex]

So the perimeter of the triangle is:
[tex]\[ 20.242706743590304 \][/tex]
This includes all steps and shows how to use the distance formula to find the lengths and sum them to find the perimeter.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.