Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's solve the problem step-by-step in a detailed manner:
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.