Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Certainly! Let's solve the problem step-by-step in a detailed manner:
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
1. Identify the Components:
- We have a number: [tex]\( 9 \)[/tex]
- This number is raised to a power: [tex]\( 6 \)[/tex]
- The base of the logarithm we are considering: [tex]\( 3 \)[/tex]
2. Logarithm of a Number Raised to a Power:
- We start with the expression: [tex]\( \log_3(9^6) \)[/tex]
- The property of logarithms that applies here is: [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex]
- According to this property, we can rewrite [tex]\( \log_3(9^6) \)[/tex] as:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) \][/tex]
3. Simplify the Expression [tex]\( \log_3(9) \)[/tex]:
- Next, we need to evaluate [tex]\( \log_3(9) \)[/tex]
- Recall that [tex]\( 9 \)[/tex] is [tex]\( 3^2 \)[/tex]. Therefore, [tex]\( \log_3(9) \)[/tex] is the same as [tex]\( \log_3(3^2) \)[/tex]
- Using the property of logarithms again, [tex]\( \log_b(a^c) = c \cdot \log_b(a) \)[/tex], we have:
[tex]\[ \log_3(3^2) = 2 \cdot \log_3(3) \][/tex]
4. Evaluate [tex]\( \log_3(3) \)[/tex]:
- The logarithm of a number to its own base is [tex]\( 1 \)[/tex]. Thus, [tex]\( \log_3(3) = 1 \)[/tex]
- So, substituting this value, we get:
[tex]\[ \log_3(3^2) = 2 \cdot 1 = 2 \][/tex]
5. Combine the Results:
- Substituting [tex]\( \log_3(9) = 2 \)[/tex] back into our original expression:
[tex]\[ \log_3(9^6) = 6 \cdot \log_3(9) = 6 \cdot 2 = 12 \][/tex]
6. Conclusion:
- Therefore, the solution to the problem [tex]\( \log_3(9^6) \)[/tex] is:
[tex]\[ \log_3(9^6) = 12 \][/tex]
So, we have verified that the logarithm of a number raised to a power is the same as the power times the logarithm of the number, and in this problem, it accurately translates to the result:
[tex]\[ \boxed{12} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.