Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain of the function [tex]\( h(x) = |x + 7| \)[/tex], we need to consider the nature of the absolute value function. The absolute value function, denoted as [tex]\( | \cdot | \)[/tex], is defined for all real numbers. This means that for any real number [tex]\( x \)[/tex], [tex]\( |x| \)[/tex] is well-defined and yields a non-negative real number.
Given [tex]\( h(x) = |x + 7| \)[/tex], let's analyze its domain step by step:
1. Identify the Expression Inside the Absolute Value:
- The expression inside the absolute value is [tex]\( x + 7 \)[/tex].
2. Determine the Set of All Possible Values for [tex]\( x \)[/tex]:
- The expression [tex]\( x + 7 \)[/tex] is a linear polynomial and is defined for all real numbers [tex]\( x \)[/tex]. There are no restrictions like division by zero or taking the square root of a negative number.
3. Conclusion:
- Since the absolute value function [tex]\( | \cdot | \)[/tex] is defined for any real number and the expression [tex]\( x + 7 \)[/tex] is also valid for every real number [tex]\( x \)[/tex], the function [tex]\( h(x) = |x + 7| \)[/tex] is also defined for all real numbers.
- Therefore, the domain of [tex]\( h(x) = |x + 7| \)[/tex] is all real numbers.
So, the domain of [tex]\( h(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
Thus, the correct answer is:
B. [tex]\( (-\infty, \infty) \)[/tex]
Given [tex]\( h(x) = |x + 7| \)[/tex], let's analyze its domain step by step:
1. Identify the Expression Inside the Absolute Value:
- The expression inside the absolute value is [tex]\( x + 7 \)[/tex].
2. Determine the Set of All Possible Values for [tex]\( x \)[/tex]:
- The expression [tex]\( x + 7 \)[/tex] is a linear polynomial and is defined for all real numbers [tex]\( x \)[/tex]. There are no restrictions like division by zero or taking the square root of a negative number.
3. Conclusion:
- Since the absolute value function [tex]\( | \cdot | \)[/tex] is defined for any real number and the expression [tex]\( x + 7 \)[/tex] is also valid for every real number [tex]\( x \)[/tex], the function [tex]\( h(x) = |x + 7| \)[/tex] is also defined for all real numbers.
- Therefore, the domain of [tex]\( h(x) = |x + 7| \)[/tex] is all real numbers.
So, the domain of [tex]\( h(x) \)[/tex] is [tex]\( (-\infty, \infty) \)[/tex].
Thus, the correct answer is:
B. [tex]\( (-\infty, \infty) \)[/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.