Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Certainly! Let's expand the given logarithmic expression [tex]\(\log_3(5x)\)[/tex] using the laws of logarithms.
The Law of Logarithms that we will use is the Product Rule, which states:
[tex]\[ \log_b(M \cdot N) = \log_b(M) + \log_b(N) \][/tex]
In this case, [tex]\(M = 5\)[/tex] and [tex]\(N = x\)[/tex].
Applying the product rule to the given expression [tex]\(\log_3(5x)\)[/tex], we get:
[tex]\[ \log_3(5x) = \log_3(5) + \log_3(x) \][/tex]
Thus, the expanded form of the expression [tex]\(\log_3(5x)\)[/tex] is:
[tex]\[ \log_3(5) + \log_3(x) \][/tex]
So the expanded expression is:
[tex]\[ \boxed{\log_3(5) + \log_3(x)} \][/tex]
The Law of Logarithms that we will use is the Product Rule, which states:
[tex]\[ \log_b(M \cdot N) = \log_b(M) + \log_b(N) \][/tex]
In this case, [tex]\(M = 5\)[/tex] and [tex]\(N = x\)[/tex].
Applying the product rule to the given expression [tex]\(\log_3(5x)\)[/tex], we get:
[tex]\[ \log_3(5x) = \log_3(5) + \log_3(x) \][/tex]
Thus, the expanded form of the expression [tex]\(\log_3(5x)\)[/tex] is:
[tex]\[ \log_3(5) + \log_3(x) \][/tex]
So the expanded expression is:
[tex]\[ \boxed{\log_3(5) + \log_3(x)} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.