Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To expand the logarithmic expression [tex]\(\log_7(6st)\)[/tex] using the Laws of Logarithms, follow these steps:
### Step-by-Step Solution:
1. Understand the Product Rule for Logarithms:
The product rule for logarithms states that:
[tex]\[ \log_b(m \cdot n) = \log_b(m) + \log_b(n) \][/tex]
This rule applies when you have a product inside the logarithm and allows you to separate it into the sum of individual logarithms.
2. Identify the parts inside the logarithm:
The expression inside the logarithm is [tex]\(6st\)[/tex]. This is a product of three terms: 6, [tex]\(s\)[/tex], and [tex]\(t\)[/tex].
3. Apply the Product Rule iteratively:
First, separate the logarithm of the product of 6 and [tex]\(st\)[/tex]:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(st) \][/tex]
Next, apply the product rule again to the [tex]\(\log_7(st)\)[/tex] term:
[tex]\[ \log_7(st) = \log_7(s) + \log_7(t) \][/tex]
4. Combine all the separated terms:
Putting it all together, we have:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Final Expanded Expression:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thus, the expanded form of the logarithmic expression [tex]\(\log_7(6st)\)[/tex] is:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Step-by-Step Solution:
1. Understand the Product Rule for Logarithms:
The product rule for logarithms states that:
[tex]\[ \log_b(m \cdot n) = \log_b(m) + \log_b(n) \][/tex]
This rule applies when you have a product inside the logarithm and allows you to separate it into the sum of individual logarithms.
2. Identify the parts inside the logarithm:
The expression inside the logarithm is [tex]\(6st\)[/tex]. This is a product of three terms: 6, [tex]\(s\)[/tex], and [tex]\(t\)[/tex].
3. Apply the Product Rule iteratively:
First, separate the logarithm of the product of 6 and [tex]\(st\)[/tex]:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(st) \][/tex]
Next, apply the product rule again to the [tex]\(\log_7(st)\)[/tex] term:
[tex]\[ \log_7(st) = \log_7(s) + \log_7(t) \][/tex]
4. Combine all the separated terms:
Putting it all together, we have:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Final Expanded Expression:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thus, the expanded form of the logarithmic expression [tex]\(\log_7(6st)\)[/tex] is:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.