Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To expand the logarithmic expression [tex]\(\log_7(6st)\)[/tex] using the Laws of Logarithms, follow these steps:
### Step-by-Step Solution:
1. Understand the Product Rule for Logarithms:
The product rule for logarithms states that:
[tex]\[ \log_b(m \cdot n) = \log_b(m) + \log_b(n) \][/tex]
This rule applies when you have a product inside the logarithm and allows you to separate it into the sum of individual logarithms.
2. Identify the parts inside the logarithm:
The expression inside the logarithm is [tex]\(6st\)[/tex]. This is a product of three terms: 6, [tex]\(s\)[/tex], and [tex]\(t\)[/tex].
3. Apply the Product Rule iteratively:
First, separate the logarithm of the product of 6 and [tex]\(st\)[/tex]:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(st) \][/tex]
Next, apply the product rule again to the [tex]\(\log_7(st)\)[/tex] term:
[tex]\[ \log_7(st) = \log_7(s) + \log_7(t) \][/tex]
4. Combine all the separated terms:
Putting it all together, we have:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Final Expanded Expression:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thus, the expanded form of the logarithmic expression [tex]\(\log_7(6st)\)[/tex] is:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Step-by-Step Solution:
1. Understand the Product Rule for Logarithms:
The product rule for logarithms states that:
[tex]\[ \log_b(m \cdot n) = \log_b(m) + \log_b(n) \][/tex]
This rule applies when you have a product inside the logarithm and allows you to separate it into the sum of individual logarithms.
2. Identify the parts inside the logarithm:
The expression inside the logarithm is [tex]\(6st\)[/tex]. This is a product of three terms: 6, [tex]\(s\)[/tex], and [tex]\(t\)[/tex].
3. Apply the Product Rule iteratively:
First, separate the logarithm of the product of 6 and [tex]\(st\)[/tex]:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(st) \][/tex]
Next, apply the product rule again to the [tex]\(\log_7(st)\)[/tex] term:
[tex]\[ \log_7(st) = \log_7(s) + \log_7(t) \][/tex]
4. Combine all the separated terms:
Putting it all together, we have:
[tex]\[ \log_7(6st) = \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
### Final Expanded Expression:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thus, the expanded form of the logarithmic expression [tex]\(\log_7(6st)\)[/tex] is:
[tex]\[ \log_7(6) + \log_7(s) + \log_7(t) \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.