Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Experience the ease of finding reliable answers to your questions from a vast community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine the possible values for [tex]\(x\)[/tex], the length of the third side of the triangle, we need to use the triangle inequality theorem. The theorem states that the sum of the lengths of any two sides of a triangle must be greater than the length of the third side.
Given the sides 2 inches and 7 inches, we set up the following inequalities:
1. [tex]\(2 + 7 > x\)[/tex]
2. [tex]\(2 + x > 7\)[/tex]
3. [tex]\(7 + x > 2\)[/tex]
Let's analyze and simplify each inequality one by one:
1. [tex]\(2 + 7 > x\)[/tex]:
[tex]\[ 9 > x \quad \Rightarrow \quad x < 9 \][/tex]
2. [tex]\(2 + x > 7\)[/tex]:
[tex]\[ 2 + x > 7 \quad \Rightarrow \quad x > 5 \][/tex]
3. [tex]\(7 + x > 2\)[/tex]:
[tex]\[ 7 + x > 2 \quad \Rightarrow \quad x > -5 \quad \text{(which is always true for positive \(x\))} \][/tex]
The critical inequalities are [tex]\(x < 9\)[/tex] and [tex]\(x > 5\)[/tex], as the third inequality [tex]\(x > -5\)[/tex] doesn't restrict the positive values of [tex]\(x\)[/tex]. Combining these results, we get:
[tex]\[ 5 < x < 9 \][/tex]
Hence, the range of possible values for [tex]\(x\)[/tex] is [tex]\(5 < x < 9\)[/tex], which corresponds to choice C.
So the correct answer is:
C. [tex]\(5 < x < 9\)[/tex]
Given the sides 2 inches and 7 inches, we set up the following inequalities:
1. [tex]\(2 + 7 > x\)[/tex]
2. [tex]\(2 + x > 7\)[/tex]
3. [tex]\(7 + x > 2\)[/tex]
Let's analyze and simplify each inequality one by one:
1. [tex]\(2 + 7 > x\)[/tex]:
[tex]\[ 9 > x \quad \Rightarrow \quad x < 9 \][/tex]
2. [tex]\(2 + x > 7\)[/tex]:
[tex]\[ 2 + x > 7 \quad \Rightarrow \quad x > 5 \][/tex]
3. [tex]\(7 + x > 2\)[/tex]:
[tex]\[ 7 + x > 2 \quad \Rightarrow \quad x > -5 \quad \text{(which is always true for positive \(x\))} \][/tex]
The critical inequalities are [tex]\(x < 9\)[/tex] and [tex]\(x > 5\)[/tex], as the third inequality [tex]\(x > -5\)[/tex] doesn't restrict the positive values of [tex]\(x\)[/tex]. Combining these results, we get:
[tex]\[ 5 < x < 9 \][/tex]
Hence, the range of possible values for [tex]\(x\)[/tex] is [tex]\(5 < x < 9\)[/tex], which corresponds to choice C.
So the correct answer is:
C. [tex]\(5 < x < 9\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.