Get the answers you need at Westonci.ca, where our expert community is dedicated to providing you with accurate information. Get quick and reliable answers to your questions from a dedicated community of professionals on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the remainder when the polynomial [tex]\( f(x) = x^3 + 5x^2 - 32x - 7 \)[/tex] is divided by [tex]\( x - 4 \)[/tex], we can use the Remainder Theorem. The Remainder Theorem states that the remainder of the division of a polynomial [tex]\( f(x) \)[/tex] by a linear divisor [tex]\( x - c \)[/tex] is [tex]\( f(c) \)[/tex].
In this case, our polynomial is [tex]\( f(x) \)[/tex] and our divisor is [tex]\( x - 4 \)[/tex]. Therefore, we need to find [tex]\( f(4) \)[/tex].
Let's evaluate [tex]\( f(4) \)[/tex]:
1. Start with the given polynomial:
[tex]\[ f(x) = x^3 + 5x^2 - 32x - 7 \][/tex]
2. Substitute [tex]\( x = 4 \)[/tex] into the polynomial:
[tex]\[ f(4) = (4)^3 + 5(4)^2 - 32(4) - 7 \][/tex]
3. Calculate each term:
- [tex]\( (4)^3 = 64 \)[/tex]
- [tex]\( 5(4)^2 = 5 \times 16 = 80 \)[/tex]
- [tex]\( 32(4) = 128 \)[/tex]
4. Substitute these values back into the expression:
[tex]\[ f(4) = 64 + 80 - 128 - 7 \][/tex]
5. Simplify the expression step by step:
- [tex]\( 64 + 80 = 144 \)[/tex]
- [tex]\( 144 - 128 = 16 \)[/tex]
- [tex]\( 16 - 7 = 9 \)[/tex]
Thus, the remainder when [tex]\( f(x) = x^3 + 5x^2 - 32x - 7 \)[/tex] is divided by [tex]\( x - 4 \)[/tex] is
[tex]\[ \boxed{9} \][/tex]
In this case, our polynomial is [tex]\( f(x) \)[/tex] and our divisor is [tex]\( x - 4 \)[/tex]. Therefore, we need to find [tex]\( f(4) \)[/tex].
Let's evaluate [tex]\( f(4) \)[/tex]:
1. Start with the given polynomial:
[tex]\[ f(x) = x^3 + 5x^2 - 32x - 7 \][/tex]
2. Substitute [tex]\( x = 4 \)[/tex] into the polynomial:
[tex]\[ f(4) = (4)^3 + 5(4)^2 - 32(4) - 7 \][/tex]
3. Calculate each term:
- [tex]\( (4)^3 = 64 \)[/tex]
- [tex]\( 5(4)^2 = 5 \times 16 = 80 \)[/tex]
- [tex]\( 32(4) = 128 \)[/tex]
4. Substitute these values back into the expression:
[tex]\[ f(4) = 64 + 80 - 128 - 7 \][/tex]
5. Simplify the expression step by step:
- [tex]\( 64 + 80 = 144 \)[/tex]
- [tex]\( 144 - 128 = 16 \)[/tex]
- [tex]\( 16 - 7 = 9 \)[/tex]
Thus, the remainder when [tex]\( f(x) = x^3 + 5x^2 - 32x - 7 \)[/tex] is divided by [tex]\( x - 4 \)[/tex] is
[tex]\[ \boxed{9} \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.