Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Certainly! Let's go through the problem step-by-step.
### Part (a): Finding the mass at time [tex]\( t = 0 \)[/tex]
The function that describes the mass remaining after [tex]\( t \)[/tex] days is given by:
[tex]\[ m(t) = 14 e^{-0.017 t} \][/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], we simply substitute [tex]\( t = 0 \)[/tex] into the function:
[tex]\[ m(0) = 14 e^{-0.017 \cdot 0} \][/tex]
Since [tex]\( -0.017 \cdot 0 = 0 \)[/tex], we have:
[tex]\[ m(0) = 14 e^0 \][/tex]
Recall that [tex]\( e^0 = 1 \)[/tex], so:
[tex]\[ m(0) = 14 \times 1 = 14 \, \text{kg} \][/tex]
Thus, the mass at [tex]\( t = 0 \)[/tex] is:
[tex]\[ 14 \, \text{kg} \][/tex]
### Part (b): Finding the mass after 42 days
Next, we need to determine how much mass remains after 42 days. We'll use the function [tex]\( m(t) \)[/tex] and substitute [tex]\( t = 42 \)[/tex].
So, we need to find [tex]\( m(42) \)[/tex]:
[tex]\[ m(42) = 14 e^{-0.017 \cdot 42} \][/tex]
First, we compute the exponent:
[tex]\[ -0.017 \cdot 42 = -0.714 \][/tex]
Now, we calculate the value of [tex]\( e^{-0.714} \)[/tex]. Utilizing the fact that we've determined this part already, we find the remaining mass is:
[tex]\[ m(42) = 14 e^{-0.714} \approx 6.9 \, \text{kg} \][/tex]
To conclude, the mass remaining after 42 days, rounded to one decimal place, is:
[tex]\[ 6.9 \, \text{kg} \][/tex]
Therefore, the answers are:
(a) [tex]\( 14 \, \text{kg} \)[/tex]
(b) [tex]\( 6.9 \, \text{kg} \)[/tex]
### Part (a): Finding the mass at time [tex]\( t = 0 \)[/tex]
The function that describes the mass remaining after [tex]\( t \)[/tex] days is given by:
[tex]\[ m(t) = 14 e^{-0.017 t} \][/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], we simply substitute [tex]\( t = 0 \)[/tex] into the function:
[tex]\[ m(0) = 14 e^{-0.017 \cdot 0} \][/tex]
Since [tex]\( -0.017 \cdot 0 = 0 \)[/tex], we have:
[tex]\[ m(0) = 14 e^0 \][/tex]
Recall that [tex]\( e^0 = 1 \)[/tex], so:
[tex]\[ m(0) = 14 \times 1 = 14 \, \text{kg} \][/tex]
Thus, the mass at [tex]\( t = 0 \)[/tex] is:
[tex]\[ 14 \, \text{kg} \][/tex]
### Part (b): Finding the mass after 42 days
Next, we need to determine how much mass remains after 42 days. We'll use the function [tex]\( m(t) \)[/tex] and substitute [tex]\( t = 42 \)[/tex].
So, we need to find [tex]\( m(42) \)[/tex]:
[tex]\[ m(42) = 14 e^{-0.017 \cdot 42} \][/tex]
First, we compute the exponent:
[tex]\[ -0.017 \cdot 42 = -0.714 \][/tex]
Now, we calculate the value of [tex]\( e^{-0.714} \)[/tex]. Utilizing the fact that we've determined this part already, we find the remaining mass is:
[tex]\[ m(42) = 14 e^{-0.714} \approx 6.9 \, \text{kg} \][/tex]
To conclude, the mass remaining after 42 days, rounded to one decimal place, is:
[tex]\[ 6.9 \, \text{kg} \][/tex]
Therefore, the answers are:
(a) [tex]\( 14 \, \text{kg} \)[/tex]
(b) [tex]\( 6.9 \, \text{kg} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.