At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's go through the problem step-by-step.
### Part (a): Finding the mass at time [tex]\( t = 0 \)[/tex]
The function that describes the mass remaining after [tex]\( t \)[/tex] days is given by:
[tex]\[ m(t) = 14 e^{-0.017 t} \][/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], we simply substitute [tex]\( t = 0 \)[/tex] into the function:
[tex]\[ m(0) = 14 e^{-0.017 \cdot 0} \][/tex]
Since [tex]\( -0.017 \cdot 0 = 0 \)[/tex], we have:
[tex]\[ m(0) = 14 e^0 \][/tex]
Recall that [tex]\( e^0 = 1 \)[/tex], so:
[tex]\[ m(0) = 14 \times 1 = 14 \, \text{kg} \][/tex]
Thus, the mass at [tex]\( t = 0 \)[/tex] is:
[tex]\[ 14 \, \text{kg} \][/tex]
### Part (b): Finding the mass after 42 days
Next, we need to determine how much mass remains after 42 days. We'll use the function [tex]\( m(t) \)[/tex] and substitute [tex]\( t = 42 \)[/tex].
So, we need to find [tex]\( m(42) \)[/tex]:
[tex]\[ m(42) = 14 e^{-0.017 \cdot 42} \][/tex]
First, we compute the exponent:
[tex]\[ -0.017 \cdot 42 = -0.714 \][/tex]
Now, we calculate the value of [tex]\( e^{-0.714} \)[/tex]. Utilizing the fact that we've determined this part already, we find the remaining mass is:
[tex]\[ m(42) = 14 e^{-0.714} \approx 6.9 \, \text{kg} \][/tex]
To conclude, the mass remaining after 42 days, rounded to one decimal place, is:
[tex]\[ 6.9 \, \text{kg} \][/tex]
Therefore, the answers are:
(a) [tex]\( 14 \, \text{kg} \)[/tex]
(b) [tex]\( 6.9 \, \text{kg} \)[/tex]
### Part (a): Finding the mass at time [tex]\( t = 0 \)[/tex]
The function that describes the mass remaining after [tex]\( t \)[/tex] days is given by:
[tex]\[ m(t) = 14 e^{-0.017 t} \][/tex]
To find the mass at time [tex]\( t = 0 \)[/tex], we simply substitute [tex]\( t = 0 \)[/tex] into the function:
[tex]\[ m(0) = 14 e^{-0.017 \cdot 0} \][/tex]
Since [tex]\( -0.017 \cdot 0 = 0 \)[/tex], we have:
[tex]\[ m(0) = 14 e^0 \][/tex]
Recall that [tex]\( e^0 = 1 \)[/tex], so:
[tex]\[ m(0) = 14 \times 1 = 14 \, \text{kg} \][/tex]
Thus, the mass at [tex]\( t = 0 \)[/tex] is:
[tex]\[ 14 \, \text{kg} \][/tex]
### Part (b): Finding the mass after 42 days
Next, we need to determine how much mass remains after 42 days. We'll use the function [tex]\( m(t) \)[/tex] and substitute [tex]\( t = 42 \)[/tex].
So, we need to find [tex]\( m(42) \)[/tex]:
[tex]\[ m(42) = 14 e^{-0.017 \cdot 42} \][/tex]
First, we compute the exponent:
[tex]\[ -0.017 \cdot 42 = -0.714 \][/tex]
Now, we calculate the value of [tex]\( e^{-0.714} \)[/tex]. Utilizing the fact that we've determined this part already, we find the remaining mass is:
[tex]\[ m(42) = 14 e^{-0.714} \approx 6.9 \, \text{kg} \][/tex]
To conclude, the mass remaining after 42 days, rounded to one decimal place, is:
[tex]\[ 6.9 \, \text{kg} \][/tex]
Therefore, the answers are:
(a) [tex]\( 14 \, \text{kg} \)[/tex]
(b) [tex]\( 6.9 \, \text{kg} \)[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.