Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which volume could belong to a cube with a side length that is an integer, we need to check if any of the given volumes can be expressed in the form [tex]\( V = s^3 \)[/tex], where [tex]\( s \)[/tex] is an integer.
Let's examine each given volume:
1. 18 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 18 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- None of these cube values equal 18.
- Hence, 18 cubic inches cannot be represented as a perfect cube with an integer side length.
2. 36 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 36 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- None of these cube values equal 36.
- Hence, 36 cubic inches cannot be represented as a perfect cube with an integer side length.
3. 64 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 64 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- Here, we find that [tex]\( 4^3 = 64 \)[/tex].
- Thus, 64 cubic inches can be represented as a perfect cube with an integer side length, specifically [tex]\( s = 4 \)[/tex].
4. 100 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 100 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- [tex]\( 5^3 = 125 \)[/tex]
- None of these cube values equal 100.
- Hence, 100 cubic inches cannot be represented as a perfect cube with an integer side length.
In conclusion, the volume that can belong to a cube with a side length that is an integer is 64 cubic inches.
Let's examine each given volume:
1. 18 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 18 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- None of these cube values equal 18.
- Hence, 18 cubic inches cannot be represented as a perfect cube with an integer side length.
2. 36 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 36 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- None of these cube values equal 36.
- Hence, 36 cubic inches cannot be represented as a perfect cube with an integer side length.
3. 64 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 64 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- Here, we find that [tex]\( 4^3 = 64 \)[/tex].
- Thus, 64 cubic inches can be represented as a perfect cube with an integer side length, specifically [tex]\( s = 4 \)[/tex].
4. 100 cubic inches:
- We need to find if there is an integer [tex]\( s \)[/tex] such that [tex]\( s^3 = 100 \)[/tex].
- Checking the cube roots of small integers:
- [tex]\( 1^3 = 1 \)[/tex]
- [tex]\( 2^3 = 8 \)[/tex]
- [tex]\( 3^3 = 27 \)[/tex]
- [tex]\( 4^3 = 64 \)[/tex]
- [tex]\( 5^3 = 125 \)[/tex]
- None of these cube values equal 100.
- Hence, 100 cubic inches cannot be represented as a perfect cube with an integer side length.
In conclusion, the volume that can belong to a cube with a side length that is an integer is 64 cubic inches.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.