Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Connect with professionals ready to provide precise answers to your questions on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the volume of the sphere, let’s start by understanding the relationship between the volumes of the cylinder and the sphere given their geometrical properties.
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.