At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the volume of the sphere, let’s start by understanding the relationship between the volumes of the cylinder and the sphere given their geometrical properties.
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]
1. Volume of a Cylinder Formula:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h \][/tex]
Given:
[tex]\[ V_{\text{cylinder}} = 21 \text{ m}^3 \][/tex]
2. Volume of a Sphere Formula:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Since the height of the cylinder [tex]\( h \)[/tex] equals the diameter of the sphere, which is [tex]\( 2r \)[/tex], we can link the cylinder's volume to the sphere's radius:
[tex]\[ V_{\text{cylinder}} = \pi r^2 h = \pi r^2 (2r) = 2\pi r^3 \][/tex]
Given:
[tex]\[ 21 = 2\pi r^3 \][/tex]
Now, we solve for [tex]\( r^3 \)[/tex]:
[tex]\[ r^3 = \frac{21}{2\pi} \][/tex]
Next, we use the volume formula for the sphere:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi r^3 \][/tex]
Substitute [tex]\( r^3 \)[/tex] from the previous step:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \pi \left( \frac{21}{2\pi} \right) \][/tex]
Simplify:
[tex]\[ V_{\text{sphere}} = \frac{4}{3} \cdot \frac{21}{2} \][/tex]
[tex]\[ V_{\text{sphere}} = \frac{4 \cdot 21}{3 \cdot 2} = \frac{84}{6} = 14 \][/tex]
Therefore, the volume of the sphere is:
[tex]\[ 14 \text{ m}^3 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{14 \text{ m}^3} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.