At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's tackle this question step by step.
### Part (a)
The coefficient [tex]\(0.13\)[/tex] in the function [tex]\(C = f(h) = 36.24 + 0.13h\)[/tex] represents the cost per additional kilowatt hour of electricity used beyond the first 250 kWh.
In other words, for every kilowatt hour (kWh) used over 250 kWh, the customer is charged an additional [tex]$0.13. ### Part (b) To find \(f(57)\), let's evaluate the function \(f(h) = 36.24 + 0.13h\) at \(h = 57\). Substituting \(h = 57\) into the function, we get: \[ f(57) = 36.24 + 0.13 \times 57 \] Simplifying this: \[ f(57) = 36.24 + 7.41 \] \[ f(57) = 43.65 \] So, \(f(57) = 43.65\). #### Interpretation: This means that the total cost for a customer who uses 307 kWh of electricity in a month (which is 250 kWh plus an additional 57 kWh) is $[/tex]43.65.
### Filling in the interpretation:
[tex]\[ f(57) = 43.65 \][/tex]
This tells us that it costs [tex]$43.65 dollars when a customer uses 307 kWh of electricity in a month. To summarize: - The coefficient \(0.13\) means that it costs $[/tex]0.13 for each additional kilowatt hour of electricity used in excess of 250 kWh.
- When calculating [tex]\(f(57)\)[/tex], it reveals that the cost when a customer uses 307 kWh of electricity in a month is $43.65.
### Part (a)
The coefficient [tex]\(0.13\)[/tex] in the function [tex]\(C = f(h) = 36.24 + 0.13h\)[/tex] represents the cost per additional kilowatt hour of electricity used beyond the first 250 kWh.
In other words, for every kilowatt hour (kWh) used over 250 kWh, the customer is charged an additional [tex]$0.13. ### Part (b) To find \(f(57)\), let's evaluate the function \(f(h) = 36.24 + 0.13h\) at \(h = 57\). Substituting \(h = 57\) into the function, we get: \[ f(57) = 36.24 + 0.13 \times 57 \] Simplifying this: \[ f(57) = 36.24 + 7.41 \] \[ f(57) = 43.65 \] So, \(f(57) = 43.65\). #### Interpretation: This means that the total cost for a customer who uses 307 kWh of electricity in a month (which is 250 kWh plus an additional 57 kWh) is $[/tex]43.65.
### Filling in the interpretation:
[tex]\[ f(57) = 43.65 \][/tex]
This tells us that it costs [tex]$43.65 dollars when a customer uses 307 kWh of electricity in a month. To summarize: - The coefficient \(0.13\) means that it costs $[/tex]0.13 for each additional kilowatt hour of electricity used in excess of 250 kWh.
- When calculating [tex]\(f(57)\)[/tex], it reveals that the cost when a customer uses 307 kWh of electricity in a month is $43.65.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.