At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To simplify the radical expression [tex]\(\frac{3-\sqrt{-72}}{-6}\)[/tex], follow these steps:
1. Identify and handle the imaginary unit [tex]\(i\)[/tex]:
Recall that [tex]\(\sqrt{-72}\)[/tex] can be written using the imaginary unit [tex]\(i\)[/tex], where [tex]\(i = \sqrt{-1}\)[/tex]. Thus, [tex]\(\sqrt{-72} = \sqrt{72} \cdot i\)[/tex].
2. Simplify the square root:
Notice that [tex]\(\sqrt{72}\)[/tex] can be simplified. Since [tex]\(72 = 36 \cdot 2\)[/tex], we have [tex]\(\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}\)[/tex].
Therefore, [tex]\(\sqrt{-72} = 6\sqrt{2} \cdot i\)[/tex].
3. Substitute back into the original expression:
Replacing [tex]\(\sqrt{-72}\)[/tex] with [tex]\(6\sqrt{2} \cdot i\)[/tex], the expression becomes:
[tex]\[ \frac{3 - 6\sqrt{2} \cdot i}{-6} \][/tex]
4. Separate the real and imaginary parts:
Break down the fraction to handle the numerator and the denominator separately:
[tex]\[ \frac{3}{-6} - \frac{6\sqrt{2} \cdot i}{-6} \][/tex]
5. Simplify each term individually:
For the real part:
[tex]\[ \frac{3}{-6} = -\frac{1}{2} \][/tex]
For the imaginary part:
[tex]\[ \frac{6\sqrt{2} \cdot i}{-6} = -\sqrt{2} \cdot i \][/tex]
6. Combine the simplified real and imaginary parts:
Putting it all together, we have:
[tex]\[ -\frac{1}{2} + \sqrt{2} \cdot i \][/tex]
Thus, the simplified radical expression is:
[tex]\[ \boxed{-\frac{1}{2} + \sqrt{2} \cdot i} \][/tex]
1. Identify and handle the imaginary unit [tex]\(i\)[/tex]:
Recall that [tex]\(\sqrt{-72}\)[/tex] can be written using the imaginary unit [tex]\(i\)[/tex], where [tex]\(i = \sqrt{-1}\)[/tex]. Thus, [tex]\(\sqrt{-72} = \sqrt{72} \cdot i\)[/tex].
2. Simplify the square root:
Notice that [tex]\(\sqrt{72}\)[/tex] can be simplified. Since [tex]\(72 = 36 \cdot 2\)[/tex], we have [tex]\(\sqrt{72} = \sqrt{36 \cdot 2} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}\)[/tex].
Therefore, [tex]\(\sqrt{-72} = 6\sqrt{2} \cdot i\)[/tex].
3. Substitute back into the original expression:
Replacing [tex]\(\sqrt{-72}\)[/tex] with [tex]\(6\sqrt{2} \cdot i\)[/tex], the expression becomes:
[tex]\[ \frac{3 - 6\sqrt{2} \cdot i}{-6} \][/tex]
4. Separate the real and imaginary parts:
Break down the fraction to handle the numerator and the denominator separately:
[tex]\[ \frac{3}{-6} - \frac{6\sqrt{2} \cdot i}{-6} \][/tex]
5. Simplify each term individually:
For the real part:
[tex]\[ \frac{3}{-6} = -\frac{1}{2} \][/tex]
For the imaginary part:
[tex]\[ \frac{6\sqrt{2} \cdot i}{-6} = -\sqrt{2} \cdot i \][/tex]
6. Combine the simplified real and imaginary parts:
Putting it all together, we have:
[tex]\[ -\frac{1}{2} + \sqrt{2} \cdot i \][/tex]
Thus, the simplified radical expression is:
[tex]\[ \boxed{-\frac{1}{2} + \sqrt{2} \cdot i} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.