Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Use the method of this section to solve the linear programming problem:

[tex]\[
\begin{array}{ll}
\text{Minimize} & C = x + 2y \\
\text{subject to} & 4x + 7y \leq 48 \\
& 2x + y = 22 \\
& x \geq 0, \; y \geq 0
\end{array}
\][/tex]

Sagot :

To solve the given linear programming problem using the method of linear programming, we need to follow these steps:

1. Formulate the Objective Function:
The goal is to minimize the objective function [tex]\( C = x + 2y \)[/tex].

2. Identify the Constraints:
The problem includes the following constraints:
[tex]\[ \begin{cases} 4x + 7y \leq 48 \\ 2x + y = 22 \\ x \geq 0 \\ y \geq 0 \end{cases} \][/tex]

3. Graphical Representation:
Since the problem involves two variables, we can visualize the constraints graphically to understand the feasible region.

- Plot the inequality [tex]\( 4x + 7y \leq 48 \)[/tex].
- Plot the equality [tex]\( 2x + y = 22 \)[/tex].

The feasible region is where all constraints overlap in the first quadrant because [tex]\( x \geq 0 \)[/tex] and [tex]\( y \geq 0 \)[/tex].

4. Find the Intersection Points:
To locate the optimal point, we need to find the intersection points of the constraints.

- Solve the system of equations [tex]\( 2x + y = 22 \)[/tex] and [tex]\( 4x + 7y = 48 \)[/tex].

From [tex]\( 2x + y = 22 \)[/tex]:
[tex]\[ y = 22 - 2x \][/tex]

Substitute [tex]\( y = 22 - 2x \)[/tex] into [tex]\( 4x + 7y = 48 \)[/tex]:
[tex]\[ 4x + 7(22 - 2x) = 48 \][/tex]
[tex]\[ 4x + 154 - 14x = 48 \][/tex]
[tex]\[ -10x + 154 = 48 \][/tex]
[tex]\[ -10x = 48 - 154 \][/tex]
[tex]\[ -10x = -106 \][/tex]
[tex]\[ x = 10.6 \][/tex]

Substitute [tex]\( x = 10.6 \)[/tex] back into [tex]\( y = 22 - 2x \)[/tex]:
[tex]\[ y = 22 - 2(10.6) \][/tex]
[tex]\[ y = 22 - 21.2 \][/tex]
[tex]\[ y = 0.8 \][/tex]

5. Evaluate the Objective Function:
Substitute the coordinates [tex]\( (10.6, 0.8) \)[/tex] into the objective function [tex]\( C = x + 2y \)[/tex]:
[tex]\[ C = 10.6 + 2(0.8) \][/tex]
[tex]\[ C = 10.6 + 1.6 \][/tex]
[tex]\[ C = 12.2 \][/tex]

Therefore, the minimum value of the objective function [tex]\( C \)[/tex] is [tex]\( 12.2 \)[/tex], which occurs at [tex]\( x = 10.6 \)[/tex] and [tex]\( y = 0.8 \)[/tex].

To summarize:
- The optimal solution is [tex]\( x = 10.6 \)[/tex] and [tex]\( y = 0.8 \)[/tex].
- The minimum value of the objective function [tex]\( C = x + 2y \)[/tex] is [tex]\( 12.2 \)[/tex].