At Westonci.ca, we connect you with the best answers from a community of experienced and knowledgeable individuals. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To factor the polynomial [tex]\( f(x) = 3x^3 + 5x^2 - 26x + 8 \)[/tex] completely given that -4 is a root, we follow these steps:
### Step 1: Verify the Given Root
First, we verify that -4 is indeed a root of the polynomial:
[tex]\[ f(-4) = 3(-4)^3 + 5(-4)^2 - 26(-4) + 8 \][/tex]
[tex]\[ f(-4) = 3(-64) + 5(16) + 104 + 8 \][/tex]
[tex]\[ f(-4) = -192 + 80 + 104 + 8 \][/tex]
[tex]\[ f(-4) = 0 \][/tex]
Since [tex]\( f(-4) = 0 \)[/tex], -4 is indeed a root of [tex]\( f(x) \)[/tex].
### Step 2: Polynomial Division
Now, we perform polynomial division of [tex]\( f(x) \)[/tex] by [tex]\( x + 4 \)[/tex]. This will give us a quotient and a remainder:
[tex]\[ \text{Divide } f(x) \text{ by } x + 4 \][/tex]
Upon dividing, we find:
[tex]\[ f(x) = (x + 4)(3x^2 - 7x + 2) \][/tex]
### Step 3: Factor the Quadratic Polynomial
Next, we need to factor the quadratic polynomial [tex]\( 3x^2 - 7x + 2 \)[/tex]. We look for factors of [tex]\( 3 \cdot 2 = 6 \)[/tex] that add up to -7. The factors -1 and -6 satisfy this condition. So, we can rewrite and factor the quadratic expression as:
[tex]\[ 3x^2 - 7x + 2 \][/tex]
[tex]\[ = 3x^2 - x - 6x + 2 \][/tex]
[tex]\[ = x(3x - 1) - 2(3x - 1) \][/tex]
[tex]\[ = (3x - 1)(x - 2) \][/tex]
### Step 4: Combine the Factors
Combining all the factors, we get:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
So, the completely factored form of the polynomial [tex]\( 3x^3 + 5x^2 - 26x + 8 \)[/tex] is:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
Thus, the polynomial [tex]\( f(x) = 3 x^3 + 5 x^2 - 26 x + 8 \)[/tex] can be factored completely as:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
### Step 1: Verify the Given Root
First, we verify that -4 is indeed a root of the polynomial:
[tex]\[ f(-4) = 3(-4)^3 + 5(-4)^2 - 26(-4) + 8 \][/tex]
[tex]\[ f(-4) = 3(-64) + 5(16) + 104 + 8 \][/tex]
[tex]\[ f(-4) = -192 + 80 + 104 + 8 \][/tex]
[tex]\[ f(-4) = 0 \][/tex]
Since [tex]\( f(-4) = 0 \)[/tex], -4 is indeed a root of [tex]\( f(x) \)[/tex].
### Step 2: Polynomial Division
Now, we perform polynomial division of [tex]\( f(x) \)[/tex] by [tex]\( x + 4 \)[/tex]. This will give us a quotient and a remainder:
[tex]\[ \text{Divide } f(x) \text{ by } x + 4 \][/tex]
Upon dividing, we find:
[tex]\[ f(x) = (x + 4)(3x^2 - 7x + 2) \][/tex]
### Step 3: Factor the Quadratic Polynomial
Next, we need to factor the quadratic polynomial [tex]\( 3x^2 - 7x + 2 \)[/tex]. We look for factors of [tex]\( 3 \cdot 2 = 6 \)[/tex] that add up to -7. The factors -1 and -6 satisfy this condition. So, we can rewrite and factor the quadratic expression as:
[tex]\[ 3x^2 - 7x + 2 \][/tex]
[tex]\[ = 3x^2 - x - 6x + 2 \][/tex]
[tex]\[ = x(3x - 1) - 2(3x - 1) \][/tex]
[tex]\[ = (3x - 1)(x - 2) \][/tex]
### Step 4: Combine the Factors
Combining all the factors, we get:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
So, the completely factored form of the polynomial [tex]\( 3x^3 + 5x^2 - 26x + 8 \)[/tex] is:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
Thus, the polynomial [tex]\( f(x) = 3 x^3 + 5 x^2 - 26 x + 8 \)[/tex] can be factored completely as:
[tex]\[ f(x) = (x + 4)(3x - 1)(x - 2) \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.