Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which rule correctly describes the composition of transformations that maps the pre-image [tex]$A B C D$[/tex] to the final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex], let's analyze the given options step-by-step.
1. Option 1: [tex]\( r_{x-1xi s} \circ T_{-6,1}(x, y) \)[/tex]
- This notation suggests a sequence of transformations, but its specific meaning is ambiguous and not standard in conventional geometric transformations.
2. Option 2: [tex]\( T_{-6.1} \)[/tex] or [tex]\( r_{x-2xi 5}(x, y) \)[/tex]
- This option combines two different transformations, suggesting either a translation by vector [tex]\((-6.1)\)[/tex] or another ambiguous transformation denoted by [tex]\( r_{x-2xi 5}(x, y) \)[/tex]. The meaning and application of this transformation are unclear and not standard.
3. Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
- This rule represents a sequence of two transformations:
1. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
2. [tex]\( R_{0,90^{\circ}} \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
- This composition is clear and follows standard notation, first moving the figure and then rotating it.
4. Option 4: [tex]\( T_{-6,1} \circ R_{0,90}(x, V) \)[/tex]
- This rule also represents a sequence of two transformations but in reverse order:
1. [tex]\( R_{0,90}(x, V) \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
2. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
- This composition is also clear but involves rotating first and then translating.
Given these analyses, the correct composition of transformations that accurately maps the figure from pre-image [tex]$A B C D$[/tex] to final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex] is:
Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
1. Option 1: [tex]\( r_{x-1xi s} \circ T_{-6,1}(x, y) \)[/tex]
- This notation suggests a sequence of transformations, but its specific meaning is ambiguous and not standard in conventional geometric transformations.
2. Option 2: [tex]\( T_{-6.1} \)[/tex] or [tex]\( r_{x-2xi 5}(x, y) \)[/tex]
- This option combines two different transformations, suggesting either a translation by vector [tex]\((-6.1)\)[/tex] or another ambiguous transformation denoted by [tex]\( r_{x-2xi 5}(x, y) \)[/tex]. The meaning and application of this transformation are unclear and not standard.
3. Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
- This rule represents a sequence of two transformations:
1. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
2. [tex]\( R_{0,90^{\circ}} \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
- This composition is clear and follows standard notation, first moving the figure and then rotating it.
4. Option 4: [tex]\( T_{-6,1} \circ R_{0,90}(x, V) \)[/tex]
- This rule also represents a sequence of two transformations but in reverse order:
1. [tex]\( R_{0,90}(x, V) \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
2. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
- This composition is also clear but involves rotating first and then translating.
Given these analyses, the correct composition of transformations that accurately maps the figure from pre-image [tex]$A B C D$[/tex] to final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex] is:
Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.