Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine which rule correctly describes the composition of transformations that maps the pre-image [tex]$A B C D$[/tex] to the final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex], let's analyze the given options step-by-step.
1. Option 1: [tex]\( r_{x-1xi s} \circ T_{-6,1}(x, y) \)[/tex]
- This notation suggests a sequence of transformations, but its specific meaning is ambiguous and not standard in conventional geometric transformations.
2. Option 2: [tex]\( T_{-6.1} \)[/tex] or [tex]\( r_{x-2xi 5}(x, y) \)[/tex]
- This option combines two different transformations, suggesting either a translation by vector [tex]\((-6.1)\)[/tex] or another ambiguous transformation denoted by [tex]\( r_{x-2xi 5}(x, y) \)[/tex]. The meaning and application of this transformation are unclear and not standard.
3. Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
- This rule represents a sequence of two transformations:
1. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
2. [tex]\( R_{0,90^{\circ}} \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
- This composition is clear and follows standard notation, first moving the figure and then rotating it.
4. Option 4: [tex]\( T_{-6,1} \circ R_{0,90}(x, V) \)[/tex]
- This rule also represents a sequence of two transformations but in reverse order:
1. [tex]\( R_{0,90}(x, V) \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
2. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
- This composition is also clear but involves rotating first and then translating.
Given these analyses, the correct composition of transformations that accurately maps the figure from pre-image [tex]$A B C D$[/tex] to final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex] is:
Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
1. Option 1: [tex]\( r_{x-1xi s} \circ T_{-6,1}(x, y) \)[/tex]
- This notation suggests a sequence of transformations, but its specific meaning is ambiguous and not standard in conventional geometric transformations.
2. Option 2: [tex]\( T_{-6.1} \)[/tex] or [tex]\( r_{x-2xi 5}(x, y) \)[/tex]
- This option combines two different transformations, suggesting either a translation by vector [tex]\((-6.1)\)[/tex] or another ambiguous transformation denoted by [tex]\( r_{x-2xi 5}(x, y) \)[/tex]. The meaning and application of this transformation are unclear and not standard.
3. Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
- This rule represents a sequence of two transformations:
1. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
2. [tex]\( R_{0,90^{\circ}} \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
- This composition is clear and follows standard notation, first moving the figure and then rotating it.
4. Option 4: [tex]\( T_{-6,1} \circ R_{0,90}(x, V) \)[/tex]
- This rule also represents a sequence of two transformations but in reverse order:
1. [tex]\( R_{0,90}(x, V) \)[/tex]: Rotate the figure around the origin (0,0) by [tex]\(90^{\circ}\)[/tex] counterclockwise.
2. [tex]\( T_{-6,1}(x, y) \)[/tex]: Translate the figure by [tex]\((-6, 1)\)[/tex].
- This composition is also clear but involves rotating first and then translating.
Given these analyses, the correct composition of transformations that accurately maps the figure from pre-image [tex]$A B C D$[/tex] to final image [tex]$A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$[/tex] is:
Option 3: [tex]\( R_{0,90^{\circ}} \circ T_{-6,1}(x, y) \)[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.