Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine which polynomial is prime, let's analyze each polynomial given:
1. [tex]\( 8x^2 - 10x - 3 \)[/tex]
2. [tex]\( 8x^2 + 2x - 3 \)[/tex]
3. [tex]\( 8x^2 - 6x - 3 \)[/tex]
4. [tex]\( 8x^2 + 23x - 3 \)[/tex]
A prime polynomial cannot be factored into the product of two or more non-constant polynomials with coefficients in the same set (usually integers).
Let's check each polynomial one by one:
1. Polynomial: [tex]\( 8x^2 - 10x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 - 10x - 3 = (2x - 3)(4x + 1) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
2. Polynomial: [tex]\( 8x^2 + 2x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 + 2x - 3 = (2x - 1)(4x + 3) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
3. Polynomial: [tex]\( 8x^2 - 6x - 3 \)[/tex]
This polynomial cannot be factored further into polynomials of lower degrees with integer coefficients. Hence:
[tex]\[ 8x^2 - 6x - 3 \quad \text{(cannot be expressed as a product of lower-degree polynomials)} \][/tex]
Therefore, this is a prime polynomial.
4. Polynomial: [tex]\( 8x^2 + 23x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 + 23x - 3 = (x + 3)(8x - 1) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
Based on the above analysis, the polynomial that is prime is:
[tex]\[ \boxed{8x^2 - 6x - 3} \][/tex]
1. [tex]\( 8x^2 - 10x - 3 \)[/tex]
2. [tex]\( 8x^2 + 2x - 3 \)[/tex]
3. [tex]\( 8x^2 - 6x - 3 \)[/tex]
4. [tex]\( 8x^2 + 23x - 3 \)[/tex]
A prime polynomial cannot be factored into the product of two or more non-constant polynomials with coefficients in the same set (usually integers).
Let's check each polynomial one by one:
1. Polynomial: [tex]\( 8x^2 - 10x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 - 10x - 3 = (2x - 3)(4x + 1) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
2. Polynomial: [tex]\( 8x^2 + 2x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 + 2x - 3 = (2x - 1)(4x + 3) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
3. Polynomial: [tex]\( 8x^2 - 6x - 3 \)[/tex]
This polynomial cannot be factored further into polynomials of lower degrees with integer coefficients. Hence:
[tex]\[ 8x^2 - 6x - 3 \quad \text{(cannot be expressed as a product of lower-degree polynomials)} \][/tex]
Therefore, this is a prime polynomial.
4. Polynomial: [tex]\( 8x^2 + 23x - 3 \)[/tex]
After factoring, this polynomial can be expressed as:
[tex]\[ 8x^2 + 23x - 3 = (x + 3)(8x - 1) \][/tex]
Since it can be written as a product of two polynomials of lower degrees, it is not a prime polynomial.
Based on the above analysis, the polynomial that is prime is:
[tex]\[ \boxed{8x^2 - 6x - 3} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.