Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the rule that describes the composition of transformations mapping the pre-image point to the image point, we need to understand the sequence of transformations involved. Here's a step-by-step explanation of each transformation and the resulting coordinates.
1. Translation: The first transformation given is [tex]\( T_{-2}(x, y) \)[/tex]. Translation involves shifting all points by a certain vector. Here, we are shifting each point by [tex]\(-2\)[/tex] units. This means:
[tex]\[ (x, y) \rightarrow (x - 2, y - 2) \][/tex]
2. Rotation: The second transformation is [tex]\( R_{0, 270^\circ} \)[/tex], which represents a rotation about the origin by [tex]\( 270^\circ \)[/tex]. A [tex]\( 270^\circ \)[/tex] rotation counterclockwise can be seen as a [tex]\( 90^\circ \)[/tex] clockwise rotation. This rotation changes the coordinates as follows:
[tex]\[ (x, y) \rightarrow (y, -x) \][/tex]
Let's combine these transformations into a single operation:
1. Apply the translation [tex]\( (x, y) \rightarrow (x - 2, y - 2) \)[/tex]:
After translation, the coordinates will be:
[tex]\[ (x', y') = (x - 2, y - 2) \][/tex]
2. Apply the rotation [tex]\( (y', -x') \)[/tex]:
After the translation, rotate the new coordinates:
[tex]\[ (x', y') \rightarrow (y' - x', -y') = (y - 2, - (x - 2)) = (y - 2, -x + 2) \][/tex]
Therefore, the final transformation that maps the pre-image point to the image point is:
[tex]\[ (x, y) \rightarrow (y - 2, -x + 2) \][/tex]
This complete transformation can be seen as a composition of a translation followed by a rotation.
1. Translation: The first transformation given is [tex]\( T_{-2}(x, y) \)[/tex]. Translation involves shifting all points by a certain vector. Here, we are shifting each point by [tex]\(-2\)[/tex] units. This means:
[tex]\[ (x, y) \rightarrow (x - 2, y - 2) \][/tex]
2. Rotation: The second transformation is [tex]\( R_{0, 270^\circ} \)[/tex], which represents a rotation about the origin by [tex]\( 270^\circ \)[/tex]. A [tex]\( 270^\circ \)[/tex] rotation counterclockwise can be seen as a [tex]\( 90^\circ \)[/tex] clockwise rotation. This rotation changes the coordinates as follows:
[tex]\[ (x, y) \rightarrow (y, -x) \][/tex]
Let's combine these transformations into a single operation:
1. Apply the translation [tex]\( (x, y) \rightarrow (x - 2, y - 2) \)[/tex]:
After translation, the coordinates will be:
[tex]\[ (x', y') = (x - 2, y - 2) \][/tex]
2. Apply the rotation [tex]\( (y', -x') \)[/tex]:
After the translation, rotate the new coordinates:
[tex]\[ (x', y') \rightarrow (y' - x', -y') = (y - 2, - (x - 2)) = (y - 2, -x + 2) \][/tex]
Therefore, the final transformation that maps the pre-image point to the image point is:
[tex]\[ (x, y) \rightarrow (y - 2, -x + 2) \][/tex]
This complete transformation can be seen as a composition of a translation followed by a rotation.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.