Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the explicit rule for the given geometric sequence, we need to follow these steps:
1. Identify the first term [tex]\(a\)[/tex]: The first term of the sequence [tex]\(f(n)\)[/tex] is given as [tex]\(3\)[/tex], so [tex]\(a = 3\)[/tex].
2. Determine the common ratio [tex]\(r\)[/tex]: The common ratio [tex]\(r\)[/tex] of a geometric sequence is found by dividing any term by the previous term. For this sequence, we can calculate the common ratio [tex]\(r\)[/tex] using the first two terms:
[tex]\[ r = \frac{f(2)}{f(1)} = \frac{15}{3} = 5 \][/tex]
3. Write the explicit rule: The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence is given by:
[tex]\[ f(n) = a \times r^{(n-1)} \][/tex]
Using the values we have identified ([tex]\(a = 3\)[/tex] and [tex]\(r = 5\)[/tex]), the explicit rule for this sequence is:
[tex]\[ f(n) = 3 \times 5^{(n-1)} \][/tex]
So, the explicit rule for the given geometric sequence is:
[tex]\[ f(n) = 3 \times 5^{(n-1)} \][/tex]
1. Identify the first term [tex]\(a\)[/tex]: The first term of the sequence [tex]\(f(n)\)[/tex] is given as [tex]\(3\)[/tex], so [tex]\(a = 3\)[/tex].
2. Determine the common ratio [tex]\(r\)[/tex]: The common ratio [tex]\(r\)[/tex] of a geometric sequence is found by dividing any term by the previous term. For this sequence, we can calculate the common ratio [tex]\(r\)[/tex] using the first two terms:
[tex]\[ r = \frac{f(2)}{f(1)} = \frac{15}{3} = 5 \][/tex]
3. Write the explicit rule: The general formula for the [tex]\(n\)[/tex]-th term of a geometric sequence is given by:
[tex]\[ f(n) = a \times r^{(n-1)} \][/tex]
Using the values we have identified ([tex]\(a = 3\)[/tex] and [tex]\(r = 5\)[/tex]), the explicit rule for this sequence is:
[tex]\[ f(n) = 3 \times 5^{(n-1)} \][/tex]
So, the explicit rule for the given geometric sequence is:
[tex]\[ f(n) = 3 \times 5^{(n-1)} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.