Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To transform the given cubic equation [tex]\(2x^3 - 9x^2 - 6 = 0\)[/tex] into a form where the second term is eliminated, we need to apply a specific substitution to [tex]\(x\)[/tex].
### Step-by-Step Procedure
1. Identify the General Form:
Consider the cubic polynomial in the form [tex]\(ax^3 + bx^2 + cx + d = 0\)[/tex]. In our problem, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], [tex]\(c = 0\)[/tex], and [tex]\(d = -6\)[/tex].
2. Substitution Method:
To eliminate the second term, [tex]\(bx^2\)[/tex], we use the substitution [tex]\(x = y + h\)[/tex] where [tex]\(h\)[/tex] is a constant that needs to be determined.
3. Perform the Substitution:
Substitute [tex]\(x = y + h\)[/tex] into the equation:
[tex]\[ 2(y+h)^3 - 9(y+h)^2 - 6 = 0 \][/tex]
4. Expand the Terms:
Let's expand [tex]\((y+h)^3\)[/tex] and [tex]\((y+h)^2\)[/tex]:
[tex]\[ (y+h)^3 = y^3 + 3hy^2 + 3h^2y + h^3 \][/tex]
[tex]\[ (y+h)^2 = y^2 + 2hy + h^2 \][/tex]
Therefore,
[tex]\[ 2(y+h)^3 = 2(y^3 + 3hy^2 + 3h^2y + h^3) = 2y^3 + 6hy^2 + 6h^2y + 2h^3 \][/tex]
[tex]\[ -9(y+h)^2 = -9(y^2 + 2hy + h^2) = -9y^2 - 18hy - 9h^2 \][/tex]
5. Combine the Terms:
Substitute these back into the original equation:
[tex]\[ 2(y^3 + 6hy^2 + 6h^2y + 2h^3) - 9(y^2 + 2hy + h^2) - 6 = 0 \][/tex]
Simplify the expression:
[tex]\[ 2y^3 + 6hy^2 + 6h^2y + 2h^3 - 9y^2 - 18hy - 9h^2 - 6 = 0 \][/tex]
Group the terms:
[tex]\[ 2y^3 + (6h - 9)y^2 + (6h^2 - 18h)y + (2h^3 - 9h^2 - 6) = 0 \][/tex]
6. Eliminate the Second Term:
For the second term to be zero, the coefficient of [tex]\(y^2\)[/tex] must be zero:
[tex]\[ 6h - 9 = 0 \][/tex]
Solve for [tex]\(h\)[/tex]:
[tex]\[ 6h = 9 \\ h = \frac{9}{6} = \frac{3}{2} \][/tex]
### Conclusion
The roots are to be diminished by [tex]\(\frac{3}{2}\)[/tex].
Thus, the correct choice is:
(c) [tex]\(\frac{3}{2}\)[/tex]
### Step-by-Step Procedure
1. Identify the General Form:
Consider the cubic polynomial in the form [tex]\(ax^3 + bx^2 + cx + d = 0\)[/tex]. In our problem, [tex]\(a = 2\)[/tex], [tex]\(b = -9\)[/tex], [tex]\(c = 0\)[/tex], and [tex]\(d = -6\)[/tex].
2. Substitution Method:
To eliminate the second term, [tex]\(bx^2\)[/tex], we use the substitution [tex]\(x = y + h\)[/tex] where [tex]\(h\)[/tex] is a constant that needs to be determined.
3. Perform the Substitution:
Substitute [tex]\(x = y + h\)[/tex] into the equation:
[tex]\[ 2(y+h)^3 - 9(y+h)^2 - 6 = 0 \][/tex]
4. Expand the Terms:
Let's expand [tex]\((y+h)^3\)[/tex] and [tex]\((y+h)^2\)[/tex]:
[tex]\[ (y+h)^3 = y^3 + 3hy^2 + 3h^2y + h^3 \][/tex]
[tex]\[ (y+h)^2 = y^2 + 2hy + h^2 \][/tex]
Therefore,
[tex]\[ 2(y+h)^3 = 2(y^3 + 3hy^2 + 3h^2y + h^3) = 2y^3 + 6hy^2 + 6h^2y + 2h^3 \][/tex]
[tex]\[ -9(y+h)^2 = -9(y^2 + 2hy + h^2) = -9y^2 - 18hy - 9h^2 \][/tex]
5. Combine the Terms:
Substitute these back into the original equation:
[tex]\[ 2(y^3 + 6hy^2 + 6h^2y + 2h^3) - 9(y^2 + 2hy + h^2) - 6 = 0 \][/tex]
Simplify the expression:
[tex]\[ 2y^3 + 6hy^2 + 6h^2y + 2h^3 - 9y^2 - 18hy - 9h^2 - 6 = 0 \][/tex]
Group the terms:
[tex]\[ 2y^3 + (6h - 9)y^2 + (6h^2 - 18h)y + (2h^3 - 9h^2 - 6) = 0 \][/tex]
6. Eliminate the Second Term:
For the second term to be zero, the coefficient of [tex]\(y^2\)[/tex] must be zero:
[tex]\[ 6h - 9 = 0 \][/tex]
Solve for [tex]\(h\)[/tex]:
[tex]\[ 6h = 9 \\ h = \frac{9}{6} = \frac{3}{2} \][/tex]
### Conclusion
The roots are to be diminished by [tex]\(\frac{3}{2}\)[/tex].
Thus, the correct choice is:
(c) [tex]\(\frac{3}{2}\)[/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.