Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the rate at which the particle is moving vertically when it reaches the point [tex]\((10, 613)\)[/tex] on the curve [tex]\( y = 7x^2 - 8x - 7 \)[/tex], we'll employ the chain rule of calculus. Given that the particle's horizontal velocity is [tex]\( \frac{dx}{dt} = -3 \)[/tex] units per minute, our goal is to find [tex]\(\frac{dy}{dt}\)[/tex].
Here are the steps to find the desired vertical rate of change:
1. Differentiate [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex] to find [tex]\(\frac{dy}{dx}\)[/tex]:
The equation of the curve is:
[tex]\[ y = 7x^2 - 8x - 7 \][/tex]
Differentiating this equation with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(7x^2 - 8x - 7) \][/tex]
[tex]\[ \frac{dy}{dx} = 14x - 8 \][/tex]
2. Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at the point [tex]\((10, 613)\)[/tex]:
Substitute [tex]\( x = 10 \)[/tex] into [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 14(10) - 8 \][/tex]
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 140 - 8 \][/tex]
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 132 \][/tex]
3. Use the chain rule to find [tex]\(\frac{dy}{dt}\)[/tex]:
The chain rule states that:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]
Substitute the values of [tex]\( \frac{dy}{dx} \)[/tex] evaluated at [tex]\( x = 10 \)[/tex] and [tex]\( \frac{dx}{dt} \)[/tex]:
[tex]\[ \frac{dy}{dt} = 132 \cdot (-3) \][/tex]
[tex]\[ \frac{dy}{dt} = -396 \][/tex]
Thus, the rate at which the particle is moving vertically (with respect to the origin) when it is at the point [tex]\((10, 613)\)[/tex] is [tex]\(-396\)[/tex] units per minute.
Here are the steps to find the desired vertical rate of change:
1. Differentiate [tex]\(y\)[/tex] with respect to [tex]\(x\)[/tex] to find [tex]\(\frac{dy}{dx}\)[/tex]:
The equation of the curve is:
[tex]\[ y = 7x^2 - 8x - 7 \][/tex]
Differentiating this equation with respect to [tex]\(x\)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx}(7x^2 - 8x - 7) \][/tex]
[tex]\[ \frac{dy}{dx} = 14x - 8 \][/tex]
2. Evaluate [tex]\(\frac{dy}{dx}\)[/tex] at the point [tex]\((10, 613)\)[/tex]:
Substitute [tex]\( x = 10 \)[/tex] into [tex]\( \frac{dy}{dx} \)[/tex]:
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 14(10) - 8 \][/tex]
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 140 - 8 \][/tex]
[tex]\[ \frac{dy}{dx}\bigg|_{x=10} = 132 \][/tex]
3. Use the chain rule to find [tex]\(\frac{dy}{dt}\)[/tex]:
The chain rule states that:
[tex]\[ \frac{dy}{dt} = \frac{dy}{dx} \cdot \frac{dx}{dt} \][/tex]
Substitute the values of [tex]\( \frac{dy}{dx} \)[/tex] evaluated at [tex]\( x = 10 \)[/tex] and [tex]\( \frac{dx}{dt} \)[/tex]:
[tex]\[ \frac{dy}{dt} = 132 \cdot (-3) \][/tex]
[tex]\[ \frac{dy}{dt} = -396 \][/tex]
Thus, the rate at which the particle is moving vertically (with respect to the origin) when it is at the point [tex]\((10, 613)\)[/tex] is [tex]\(-396\)[/tex] units per minute.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.