Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Given the sets:
[tex]\[ A = \{2,4,6,8,10\} \][/tex]
[tex]\[ B = \{1,2,3,4,5,6\} \][/tex]

Find [tex]\((A \cup B)^{\prime}\)[/tex].


Sagot :

To find [tex]\((A \cup B)^{\prime}\)[/tex], follow these steps:

1. Identify the Universal Set [tex]\( U \)[/tex] and Sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
- Universal Set [tex]\( U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \)[/tex]
- Set [tex]\( A = \{2, 4, 6, 8, 10\} \)[/tex]
- Set [tex]\( B = \{1, 2, 3, 4, 5, 6\} \)[/tex]

2. Find the Union of Sets [tex]\( A \)[/tex] and [tex]\( B \)[/tex]:
- The union of two sets [tex]\( A \cup B \)[/tex] includes all elements that are in either set [tex]\( A \)[/tex], set [tex]\( B \)[/tex], or in both.
- [tex]\( A \cup B = \{2, 4, 6, 8, 10\} \cup \{1, 2, 3, 4, 5, 6\} \)[/tex]
- Combine all unique elements from both sets: [tex]\( A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\} \)[/tex]

3. Find the Complement of [tex]\( A \cup B \)[/tex] in the Universal Set [tex]\( U \)[/tex]:
- The complement of a set [tex]\( (A \cup B)^{\prime} \)[/tex] consists of all the elements in the universal set [tex]\( U \)[/tex] that are not in [tex]\( A \cup B \)[/tex].
- Identify the elements in [tex]\( U \)[/tex] that are not in [tex]\( A \cup B \)[/tex]:
- Universal Set [tex]\( U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\} \)[/tex]
- [tex]\( A \cup B = \{1, 2, 3, 4, 5, 6, 8, 10\} \)[/tex]
- Elements in [tex]\( U \)[/tex] but not in [tex]\( A \cup B \)[/tex]: [tex]\( \{7, 9\} \)[/tex]

4. Conclusion:

Therefore, the complement of [tex]\( A \cup B \)[/tex], denoted as [tex]\( (A \cup B)^{\prime} \)[/tex], is [tex]\( \{7, 9\} \)[/tex].