Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Discover a wealth of knowledge from professionals across various disciplines on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the equation of the line that is tangent to the circle [tex]\( x^2 + y^2 = 13 \)[/tex] at the point [tex]\( (2, 3) \)[/tex], we can follow these steps:
1. Understand the Circle's Equation:
The general equation of the circle is [tex]\( x^2 + y^2 = r^2 \)[/tex]. Here, [tex]\( r^2 \)[/tex] is given as 13. Therefore, the equation of the circle is [tex]\( x^2 + y^2 = 13 \)[/tex].
2. Identify the Point of Tangency:
We need to find the tangent line at the point [tex]\( (2, 3) \)[/tex].
3. Formula for the Tangent Line:
For a circle centered at the origin with radius [tex]\( r \)[/tex], the tangent line at any point [tex]\( (x_0, y_0) \)[/tex] on the circle can be found using the formula:
[tex]\[ x_0 \cdot x + y_0 \cdot y = r^2 \][/tex]
4. Substitute the Point (2,3) into the Formula:
Given that the point of tangency is [tex]\( (2, 3) \)[/tex], we substitute [tex]\( x_0 = 2 \)[/tex] and [tex]\( y_0 = 3 \)[/tex] into the formula above:
[tex]\[ 2 \cdot x + 3 \cdot y = r^2 \][/tex]
5. Substitute the Value of [tex]\( r^2 \)[/tex]:
We know from the circle’s equation that [tex]\( r^2 = 13 \)[/tex]. So the equation becomes:
[tex]\[ 2x + 3y = 13 \][/tex]
Thus, the equation of the line that is tangent to the circle [tex]\( x^2 + y^2 = 13 \)[/tex] at the point [tex]\( (2, 3) \)[/tex] is:
[tex]\[ 2x + 3y = 13 \][/tex]
This concludes our step-by-step solution to finding the equation of the tangent line.
1. Understand the Circle's Equation:
The general equation of the circle is [tex]\( x^2 + y^2 = r^2 \)[/tex]. Here, [tex]\( r^2 \)[/tex] is given as 13. Therefore, the equation of the circle is [tex]\( x^2 + y^2 = 13 \)[/tex].
2. Identify the Point of Tangency:
We need to find the tangent line at the point [tex]\( (2, 3) \)[/tex].
3. Formula for the Tangent Line:
For a circle centered at the origin with radius [tex]\( r \)[/tex], the tangent line at any point [tex]\( (x_0, y_0) \)[/tex] on the circle can be found using the formula:
[tex]\[ x_0 \cdot x + y_0 \cdot y = r^2 \][/tex]
4. Substitute the Point (2,3) into the Formula:
Given that the point of tangency is [tex]\( (2, 3) \)[/tex], we substitute [tex]\( x_0 = 2 \)[/tex] and [tex]\( y_0 = 3 \)[/tex] into the formula above:
[tex]\[ 2 \cdot x + 3 \cdot y = r^2 \][/tex]
5. Substitute the Value of [tex]\( r^2 \)[/tex]:
We know from the circle’s equation that [tex]\( r^2 = 13 \)[/tex]. So the equation becomes:
[tex]\[ 2x + 3y = 13 \][/tex]
Thus, the equation of the line that is tangent to the circle [tex]\( x^2 + y^2 = 13 \)[/tex] at the point [tex]\( (2, 3) \)[/tex] is:
[tex]\[ 2x + 3y = 13 \][/tex]
This concludes our step-by-step solution to finding the equation of the tangent line.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.