Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Let's analyze each statement individually to determine if it is true or false:
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.