Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's analyze each statement individually to determine if it is true or false:
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
1. Statement: [tex]\(2 \leq 2\)[/tex]
- Here, we check if 2 is less than or equal to 2. Since 2 is equal to 2, this statement is true.
- Result: True
2. Statement: [tex]\(-2 \geq -2.5 \geq -3\)[/tex]
- This is a compound inequality. First, we check [tex]\(-2 \geq -2.5\)[/tex]. Since [tex]\(-2\)[/tex] is greater than [tex]\(-2.5\)[/tex], the first part is true.
- Next, we check [tex]\(-2.5 \geq -3\)[/tex]. Since [tex]\(-2.5\)[/tex] is greater than [tex]\(-3\)[/tex], the second part is true as well.
- Since both parts are true, the entire compound inequality is true.
- Result: True
3. Statement: [tex]\(10000 > -1000000\)[/tex]
- We need to determine if [tex]\(10000\)[/tex] is greater than [tex]\(-1000000\)[/tex]. This is evidently true since [tex]\(10000\)[/tex] is a large positive number and [tex]\(-1000000\)[/tex] is a large negative number.
- Result: True
4. Statement: [tex]\(2 = 2\)[/tex]
- Here, we verify if [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex]. This is directly true as both sides of the equation match.
- Result: True
5. Statement: [tex]\(2 \geq 2\)[/tex]
- We check if [tex]\(2\)[/tex] is greater than or equal to [tex]\(2\)[/tex]. Since [tex]\(2\)[/tex] is equal to [tex]\(2\)[/tex], this statement is true.
- Result: True
6. Statement: [tex]\(-2 \leq -2.5 \leq -3\)[/tex]
- This is another compound inequality. First, we check [tex]\(-2 \leq -2.5\)[/tex]. Since [tex]\(-2.5\)[/tex] is less than [tex]\(-2\)[/tex], this is false.
- For the second part, [tex]\(-2.5 \leq -3\)[/tex], it is false since [tex]\(-2.5\)[/tex] is not less than or equal to [tex]\(-3\)[/tex].
- Because the first part of the statement is false, the entire compound inequality is false.
- Result: False
7. Statement: [tex]\(-4 < 1\)[/tex]
- We need to determine if [tex]\(-4\)[/tex] is less than [tex]\(1\)[/tex]. This is clearly true since [tex]\(-4\)[/tex] is a negative number and [tex]\(1\)[/tex] is a positive number.
- Result: True
In summary, here are the results for each statement:
1. [tex]\(2 \leq 2\)[/tex] is True
2. [tex]\(-2 \geq -2.5 \geq -3\)[/tex] is True
3. [tex]\(10000 > -1000000\)[/tex] is True
4. [tex]\(2 = 2\)[/tex] is True
5. [tex]\(2 \geq 2\)[/tex] is True
6. [tex]\(-2 \leq -2.5 \leq -3\)[/tex] is False
7. [tex]\(-4 < 1\)[/tex] is True
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.